Molecular dynamics investigation of dislocation pinning by a nanovoid in copper
- Earthquake Research Institute, University of Tokyo, Tokyo 113-0032 (Japan)
The interaction between an edge dislocation and a void in copper is investigated by means of a molecular dynamics simulation. The depinning stresses of the leading partial and of the trailing partial show qualitatively different behaviors. The depinning stress of the trailing partial increases logarithmically with the void radius, while that of the leading partial behaves in a different manner due to the interaction between two partials. The pinning angle, which characterizes the obstacle strength, approaches zero when the void radius exceeds 3 nm. No temperature dependence is found in the critical stress and the critical angle. This is attributed to an absence of climb motion. It is also found that the distance between the void center and a glide plane asymmetrically affects the pinning strength.
- OSTI ID:
- 20719396
- Journal Information:
- Physical Review. B, Condensed Matter and Materials Physics, Journal Name: Physical Review. B, Condensed Matter and Materials Physics Journal Issue: 9 Vol. 72; ISSN 1098-0121
- Country of Publication:
- United States
- Language:
- English
Similar Records
Plastic deformation of crystals: analytical and computer simulation studies of dislocation glide
On the irradiation creep by climb-enabled glide of dislocations