Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al-Ti-Si composites prepared by mechanical alloying

Journal Article · · Acta Materialia

Three Al{sub 30}Ti{sub 70-x} Si{sub x} (x=10, 20, 30), along with an Al-rich (Al{sub 50}Ti{sub 40}Si{sub 10}) and an Al-lean (Al{sub 10}Ti{sub 60}Si{sub 30}) elemental powder blends were subjected to mechanical alloying by high-energy planetary ball milling to yield a composite microstructure with varying proportions of amorphous and nanocrystalline intermetallic phases. Microstructural characterization at different stages of milling was carried out by X-ray diffraction, high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Furthermore, {sup 27}Al nuclear magnetic resonance (NMR) studies were undertaken to probe the mechanism of solid-state amorphization. Ball milling leads to alloying, nanocrystallization and partial solid-state amorphization followed/accompanied by strain-induced nucleation of nanocrystalline intermetallic phases from an amorphous solid solution. Both these amorphous and nano-intermetallic phases are associated with characteristic NMR peaks at lower frequencies (than that of pure Al). Thus, mechanical alloying of Al-Ti-Si appears a suitable technique for developing nanocrystalline intermetallic phase/compound dispersed amorphous matrix composites.

OSTI ID:
20634744
Journal Information:
Acta Materialia, Journal Name: Acta Materialia Journal Issue: 14 Vol. 52; ISSN 1359-6454; ISSN ACMAFD
Country of Publication:
United States
Language:
English

Similar Records

The effect of milling time on the synthesis of Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy
Journal Article · Fri Mar 25 00:00:00 EDT 2016 · AIP Conference Proceedings · OSTI ID:22591021

Structural stability of mechanically alloyed amorphous (FeCoNi)70Ti10B20 under high-temperature and high-pressure
Journal Article · Mon Dec 28 23:00:00 EST 2020 · Journal of Alloys and Compounds · OSTI ID:1844934

Shock consolidation of mechanically alloyed amorphous Ti-Si powders
Journal Article · Sun Oct 01 00:00:00 EDT 1995 · Metallurgical Transactions, A · OSTI ID:131437