skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Benefits of rapid solidification processing of modified LaNi{sub 5} alloys by high pressure gas atomization for battery applications

Conference ·
OSTI ID:20019121

A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi{sub 5} powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorption of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25{micro}m. These results suggest that direct powder processing of a LaNi{sub 5{minus}x}Sn{sub x} alloy has potential application in rechargeable Ni/MH batteries.

Research Organization:
Ames Lab., IA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-82
OSTI ID:
20019121
Resource Relation:
Conference: 1997 Materials Research Society Fall Meeting, Boston, MA (US), 12/01/1997--12/05/1997; Other Information: PBD: 1998; Related Information: In: Materials for electrochemical energy storage and conversion II -- Batteries, capacitors and fuel cells. Materials Research Society symposium proceedings, Volume 496, by Ginley, D.S.; Doughty, D.H.; Scrosati, B.; Takamura, T.; Zhang, Z.J. [eds.], 702 pages.
Country of Publication:
United States
Language:
English