Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Inner shell vacancy filling and production in highly-charged-ion surface collisions

Conference ·
OSTI ID:199874
 [1]
  1. Hahn-Meitner-Institut Berlin (Germany)
Secondary electron spectra of H-like Ne{sup 9+} ions incident with impact energies from 135 eV to 22.5 keV on a solid Al(111) surface were measured. The dependence of the K Auger electron yield on the observation angle and on the projectile energy is studied in detail. The data show clear evidence for Auger emission from below the surface even for the lowest projectile velocity. In addition, it is found that the Ne L shell filling via charge exchange decrease with decreasing impact energy and reaches zero near an incident energy of 200 eV. Also, the authors measured the intensity of the Au N{sub 5}N{sub 6,7}N{sub 6,7} Auger electrons for Ar{sup 9+} ions with kinetic energies from 125 eV up to 5.3 keV. A threshold behavior is observed in the production of target Au N{sub 5} vacancies by Ar{sup 9+} ions. To analyse the data, they calculated correlation diagrams involving model energies to obtain the internuclear distance of orbital and potential curve crossings. The comparison of experiment and theory shows that the excitation process is not expected to be due to a resonant vacancy transfer from the projectile to the target but due to a dielectronic process which is governed by the electron-electron interaction.
OSTI ID:
199874
Report Number(s):
CONF-941129--
Country of Publication:
United States
Language:
English