Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Photovoltaics at multi-terawatt scale: Waiting is not an option

Journal Article · · Science
 [1];  [2];  [3];  [4];  [5];  [1];  [6];  [7];  [8];  [1];  [9];  [1];  [10];  [11];  [12];  [13];  [14];  [15];  [16];  [17] more »;  [18];  [1];  [19];  [18];  [20];  [21];  [22];  [23];  [24];  [25];  [23];  [26];  [27];  [18];  [28];  [24];  [29];  [30];  [31];  [1];  [32];  [33];  [34];  [1];  [35];  [24];  [36];  [37];  [38];  [10];  [39] « less
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  2. University of New South Wales, Sydney, NSW (Australia); Yangtze Institute for Solar Technology, Hefei (China); AMROCK Pty Ltd, Sydney (Australia)
  3. Aarhus University (Denmark)
  4. Trina Solar (China)
  5. California Institute of Technology (CalTech), Pasadena, CA (United States)
  6. Lahti University of Technology, Lappeenranta (Finland)
  7. Oxford PV, Yarnton (United Kingdom)
  8. King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
  9. Osaka University (Japan)
  10. First Solar, Tempe, AZ (United States)
  11. Philipps-University Marburg (Germany)
  12. University of New South Wales, Sydney, NSW (Australia)
  13. Ecole Polytechnique Federale Lausanne (EPFL) (Switzerland)
  14. VDE Renewables GmbH, Alzenau (Germany)
  15. RENA Technologies GmbH, Gutenbach (Germany)
  16. European Commission, Brussels (Belgium)
  17. RTS Corporation, Trumbull, CT (United States)
  18. National Institute of Advanced Industrial Science and Technology (AIST), Fukushima (Japan)
  19. University of California, Merced, CA (United States)
  20. NET Nowak Energy & Technology Ltd, St. Ursen (Switzerland)
  21. University of Tokyo (Japan)
  22. Solarlab Aiko Europe GmbH, Freiburg (Germany)
  23. Forschungszentrum Jülich (Germany)
  24. Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)
  25. Zentrum für Sonnenenergie- und Wasserstoff- Forschung Baden-Württemberg, Stuttgart (Germany)
  26. Solar Energy Research Institute of Singapore (SERIS) (Singapore)
  27. Strategen, Rancho Cordoba, CA (United Staes)
  28. TransnetBW, Stuttgart (Germany)
  29. Helmholtz-Zentrum Berlin (Germany)
  30. Sinton Industries, Sinton, TX (United states)
  31. Centre National de la Recherche Scientifique (CNRS) (France)
  32. RENA Technologies (Germany)
  33. Colorado School of Mines, Golden, CO (United States)
  34. University of Ljubljana (Slovenia)
  35. Indian Institute of Technology (IIT), Madras (India)
  36. University of California, Berkeley, CA (United States)
  37. Delft University of Technology (Netherlands)
  38. Albert-Ludwigs-University, Freiburg (Germany)
  39. Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany); Albert-Ludwigs-University, Freiburg (Germany)
We report a major renewable-energy milestone occurred in 2022: Photovoltaics (PV) exceeded a global installed capacity of 1 TWdc. But despite considerable growth and cost reduction over time, PV is still a small part of global electricity generation (4 to 5% for 2022), and the window is increasingly closing to take action at scale to cut greenhouse gas (GHG) emissions while meeting global energy needs for the future. PV is one of very few options that can be dispatched relatively quickly, but discussions of TW-scale growth at the global level may not be clearly communicating the needed size and speed for renewable-energy installation. A major global risk would be to make poor assumptions or mistakes in modeling and promoting the required PV deployment and industry growth and then realize by 2035 that we were profoundly wrong on the low side and need to ramp up manufacturing and deployment to unrealistic or unsustainable levels.
Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
AC36-08GO28308
OSTI ID:
1969987
Report Number(s):
NREL/JA-5K00-85113; MainId:85886; UUID:bba22c9e-18a1-4adc-8a14-98093ade4ccb; MainAdminID:69301
Journal Information:
Science, Journal Name: Science Journal Issue: 6640 Vol. 380; ISSN 0036-8075
Publisher:
AAASCopyright Statement
Country of Publication:
United States
Language:
English

References (12)

Low-cost renewable electricity as the key driver of the global energy transition towards sustainability journal July 2021
PV in the circular economy, a dynamic framework analyzing technology evolution and reliability impacts journal January 2022
Embodied energy and carbon from the manufacture of cadmium telluride and silicon photovoltaics journal July 2022
Inter-sectoral effects of high renewable energy share in global energy system journal June 2019
The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: Assessment and opportunities journal June 2021
Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption journal September 2022
Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands journal September 2019
Technological learning for resource efficient terawatt scale photovoltaics journal January 2021
Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies journal June 2020
Passivated emitter and rear cell—Devices, technology, and modeling journal December 2020
The 2020 photovoltaic technologies roadmap journal September 2020
On the History and Future of 100% Renewable Energy Systems Research journal January 2022

Figures / Tables (2)


Similar Records

Terawatt-scale photovoltaics: Transform global energy
Journal Article · Thu May 30 20:00:00 EDT 2019 · Science · OSTI ID:1545001

Revisiting the Terawatt Challenge
Journal Article · Tue Mar 10 20:00:00 EDT 2020 · MRS Bulletin · OSTI ID:1659927

Terawatt-scale photovoltaics: Trajectories and challenges
Journal Article · Wed Apr 12 20:00:00 EDT 2017 · Science · OSTI ID:1352502