Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A Dynamic Risk Framework for the Optimization of Physical Security Posture of Nuclear Power Plants

Conference ·
OSTI ID:1967342

This paper describes an ongoing work within the Light Water Reactor Sustainability pathway at Idaho National Laboratory (INL) to optimize security and cost of nuclear power plants. It introduces the dynamic risk assessment tool developed at INL, Event Modeling Risk Assessment using Linked Diagrams (EMRALD). EMRALD was leveraged to optimize the security posture of a nuclear power plant by integrating force-on-force (FOF) simulations and operator mitigation actions including the dynamic and flexible coping strategies (FLEX). To illustrate the methodology, four attack scenarios were modeled in a commercially available FOF simulation tool using a hypothetical nuclear power plant facility. The simulation results provide valuable insights into possible attack outcomes, as well as the probabilistic risk of core damage event given these outcomes. Safety mitigation procedures were modeled in EMRALD dependent on the attack outcomes by considering human operator uncertainties. The results demonstrate that the number of armed responders can be optimized, while still maintaining the same protection level as the initial security posture. The proposed modeling and simulation framework of integrating FLEX equipment with FOF models enables the nuclear power plants to credit FLEX portable equipment in the plant security posture, resulting in an efficient and optimized physical security system.

Research Organization:
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1967342
Report Number(s):
INL/CON-22-66912-Rev000
Country of Publication:
United States
Language:
English