Designing Low Tortuosity Electrodes through Pattern Optimization for Fast-Charging
- Northeastern Univ., Boston, MA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Western Michigan Univ., Kalamazoo MI (United States)
The development of fast-charging technologies is crucial for expediting the progress and promotion of electric vehicles. In addition to innovative material exploration, reduction in the tortuosity of electrodes is a favored strategy to enhance the fast-charging capability of lithium-ion batteries by optimizing the ion-transfer kinetics. To realize the industrialization of low-tortuosity electrodes, a facile, cost-effective, highly controlled, and high-output continuous additive manufacturing roll-to-roll screen printing technology is proposed to render customized vertical channels within electrodes. Extremely precise vertical channels are fabricated by applying the as-developed inks, using LiNi0.6Mn0.2Co0.2O2 as the cathode material. Additionally, the relationship between the electrochemical properties and architecture of the channels, including the pattern, channel diameter, and edge distance between channels, is revealed. The optimized screen-printed electrode exhibited a seven-fold higher charge capacity (72 mAh g-1) at a current rate of 6 C and superior stability compared with that of the conventional bar-coated electrode (10 mAh g-1, 6 C) at a mass loading of 10 mg cm-2. Finally, this roll-to-roll additive manufacturing can potentially be applied to various active materials printing to reduce electrode tortuosity and enable fast charging in battery manufacturing.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC05-00OR22725; EE0009111
- OSTI ID:
- 1959580
- Journal Information:
- Small Methods, Journal Name: Small Methods Journal Issue: 4 Vol. 7; ISSN 2366-9608
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Opening twisted polymer chains for simultaneously high printability and battery fast-charge
Promoting electrochemical rates by concurrent ionic-electronic conductivity enhancement in high mass loading cathode electrode
Journal Article
·
Mon Nov 14 19:00:00 EST 2022
· Energy Storage Materials
·
OSTI ID:1901640
Promoting electrochemical rates by concurrent ionic-electronic conductivity enhancement in high mass loading cathode electrode
Journal Article
·
Sun Jun 09 20:00:00 EDT 2024
· Energy Storage Materials
·
OSTI ID:2438749