Smadici, Şerban, et al. "Absence of long-ranged charge order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Na</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">Ca</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>–</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mn>0.08</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>." Physical Review. B, Condensed Matter and Materials Physics, vol. 75, no. 7, Feb. 2007. https://doi.org/10.1103/physrevb.75.075104
Smadici, Şerban, Abbamonte, Peter, Taguchi, Munetaka, Kohsaka, Yuhki, Sasagawa, Takao, Azuma, Masaki, Takano, Mikio, & Takagi, Hidenori (2007). Absence of long-ranged charge order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Na</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">Ca</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>–</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mn>0.08</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>. Physical Review. B, Condensed Matter and Materials Physics, 75(7). https://doi.org/10.1103/physrevb.75.075104
Smadici, Şerban, Abbamonte, Peter, Taguchi, Munetaka, et al., "Absence of long-ranged charge order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Na</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">Ca</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>–</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mn>0.08</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>," Physical Review. B, Condensed Matter and Materials Physics 75, no. 7 (2007), https://doi.org/10.1103/physrevb.75.075104
@article{osti_1958867,
author = {Smadici, Şerban and Abbamonte, Peter and Taguchi, Munetaka and Kohsaka, Yuhki and Sasagawa, Takao and Azuma, Masaki and Takano, Mikio and Takagi, Hidenori},
title = {Absence of long-ranged charge order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Na</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">Ca</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>–</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cl</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mn>0.08</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>},
annote = {Recent scanning-tunneling spectroscopy (STS) studies of the cupric oxychloride NaxCa2–xCuO2Cl2 (NCCOC) have uncovered a periodic 4a × 4a density of states (DOS) modulation, termed a “checkerboard” [T. Hanaguri et al., Nature (London) 430, 1001 (2004)]. The periodicity of this phase is the same as that of the “stripe” charge order observed with neutron scattering in the very similar systems La1.48Nd0.4Sr0.12CuO4 (LNSCO) [J. M. Tranquada et al., Nature (London) 375, 561 (1995)] and La1.875Ba0.125CuO4 (LBCO) [M. Fujita et al., Phys. Rev. Lett. 88, 167008 (2002)]. This raises the question of whether the stripes are, in fact, actually checkerboards. Unfortunately, NCCOC samples are very small and LBCO and LNSCO samples do not cleave, so neutron and STS measurements cannot be carried out on the same system. To determine the relationship between stripes and checkers, we used resonant soft-x-ray scattering, previously applied to LBCO [P. Abbamonte et al., Nat. Phys. 1, 155 (2005)], to study single crystals of NCCOC. No evidence was seen for a 4a × 4a DOS modulation, indicating that the checkerboard effect is not directly related to the stripe modulation in LBCO. Here, we place an upper bound on the product of the charge amplitude and the square of the in-plane correlation length of 2.3 × 103 hole Å2.},
doi = {10.1103/physrevb.75.075104},
url = {https://www.osti.gov/biblio/1958867},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
issn = {ISSN 1098-0121},
number = {7},
volume = {75},
place = {United States},
publisher = {American Physical Society (APS)},
year = {2007},
month = {02}}