CUPID will be a next generation experiment searching for the neutrinoless double β decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li2100MoO4 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of α particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 ± 0.2) keV FWHM at the Q-value of 100Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors’ mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an α particle rejection higher than 99.9%, fully satisfying the requirements for CUPID.
Alfonso, K., et al. "Optimization of the first CUPID detector module." European Physical Journal. C, Particles and Fields (Online), vol. 82, no. 9, Sep. 2022. https://doi.org/10.1140/epjc/s10052-022-10720-3
Alfonso, K., Armatol, A., Augier, C., Avignone, F. T., Azzolini, O., Balata, M., Barabash, A. S., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bettelli, M., Biassoni, M., Billard, J., Boldrini, V., Branca, A., ... Zucchelli, S. (2022). Optimization of the first CUPID detector module. European Physical Journal. C, Particles and Fields (Online), 82(9). https://doi.org/10.1140/epjc/s10052-022-10720-3
Alfonso, K., Armatol, A., Augier, C., et al., "Optimization of the first CUPID detector module," European Physical Journal. C, Particles and Fields (Online) 82, no. 9 (2022), https://doi.org/10.1140/epjc/s10052-022-10720-3
@article{osti_1891878,
author = {Alfonso, K. and Armatol, A. and Augier, C. and Avignone, F. T. and Azzolini, O. and Balata, M. and Barabash, A. S. and Bari, G. and Barresi, A. and Baudin, D. and others},
title = {Optimization of the first CUPID detector module},
annote = {CUPID will be a next generation experiment searching for the neutrinoless double β decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li2 100MoO4 crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of α particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 ± 0.2) keV FWHM at the Q-value of 100Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors’ mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an α particle rejection higher than 99.9%, fully satisfying the requirements for CUPID.},
doi = {10.1140/epjc/s10052-022-10720-3},
url = {https://www.osti.gov/biblio/1891878},
journal = {European Physical Journal. C, Particles and Fields (Online)},
issn = {ISSN 1434-6052},
number = {9},
volume = {82},
place = {United States},
publisher = {Springer Nature},
year = {2022},
month = {09}}
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 520, Issue 1-3https://doi.org/10.1016/j.nima.2003.11.319
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 617, Issue 1-3https://doi.org/10.1016/j.nima.2009.09.023
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 664, Issue 1https://doi.org/10.1016/j.nima.2011.10.065
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 891https://doi.org/10.1016/j.nima.2018.02.101
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 935https://doi.org/10.1016/j.nima.2019.05.019
PROCEEDINGS OF THE XXV CONFERENCE ON HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2017): Dedicated to the 60th anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, AIP Conference Proceedingshttps://doi.org/10.1063/1.5007642