Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions

Dataset ·
DOI:https://doi.org/10.7910/DVN/JXSDJV· OSTI ID:1887853

Nonuniformities present in the laser illumination and target in laser-driven inertial confinement fusion experiments lead to an asymmetric compression of the target, resulting in an inefficient conversion of shell kinetic energy to thermal energy of the hot-spot plasma. In this paper, the effects of asymmetric compression of cryogenic deuterium tritium laser-direct-drive implosions are examined using a suite of nuclear and x-ray diagnostics on the OMEGA laser. The neutron-averaged hot-spot velocity (~uhs) and apparent ion temperature (Ti) asymmetry are determined from neutron time-of-flight measurements of the primary deuterium tritium fusion neutron energy spectrum, while the areal density (rhoR) of the compressed fuel surrounding the hot spot is inferred from measurements of the scattered neutron energy spectrum. The low-mode perturbations of the hot-spot shape are characterized from x-ray self-emission images recorded along three quasi-orthogonal lines of sight. Implosions with significant mode-1 laser drive asymmetries show large hot-spot velocities (>100 km/s) in a direction consistent with the hot-spot elongation observed in x-ray images, measured Ti asymmetry, and rhoR asymmetry. Laser drive corrections have been applied through shifting the initial target location in order to mitigate the observed asymmetry. With the asymmetry corrected, a more-symmetric hot spot is observed with reduced ~uhs, Ti asymmetry, rhoR asymmetry, and a 30% increase in the fusion yield.

Research Organization:
Univ. of Rochester, NY (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
NA0003856
OSTI ID:
1887853
Country of Publication:
United States
Language:
English

Cited By (1)

Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions journal April 2021

Similar Records

Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions
Journal Article · Fri Apr 02 00:00:00 EDT 2021 · Physics of Plasmas · OSTI ID:1774605

Three-dimensional reconstruction of inertial confinement fusion hot-spot plasma from x-ray and nuclear diagnostics on OMEGA
Journal Article · Fri May 23 00:00:00 EDT 2025 · Physics of Plasmas · OSTI ID:2568653