Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions
more »
- Univ. of Rochester, NY (United States); Laboratory for Laser Energetics, University of Rochester
- Univ. of Rochester, NY (United States)
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Nonuniformities present in the laser illumination and target in laser-driven inertial confinement fusion experiments lead to an asymmetric compression of the target, resulting in an inefficient conversion of shell kinetic energy to thermal energy of the hot-spot plasma. In this paper, the effects of asymmetric compression of cryogenic deuterium tritium laser-direct-drive implosions are examined using a suite of nuclear and x-ray diagnostics on the OMEGA laser. The neutron-averaged hot-spot velocity (u→hs) and apparent ion temperature (Ti) asymmetry are determined from neutron time-of-flight measurements of the primary deuterium tritium fusion neutron energy spectrum, while the areal density (ρR) of the compressed fuel surrounding the hot spot is inferred from measurements of the scattered neutron energy spectrum. Here, the low-mode perturbations of the hot-spot shape are characterized from x-ray self-emission images recorded along three quasi-orthogonal lines of sight. Implosions with significant mode-1 laser drive asymmetries show large hot-spot velocities (>100 km/s) in a direction consistent with the hot-spot elongation observed in x-ray images, measured Ti asymmetry, and ρR asymmetry. Laser drive corrections have been applied through shifting the initial target location in order to mitigate the observed asymmetry. With the asymmetry corrected, a more-symmetric hot spot is observed with reduced u→hs, Ti asymmetry, ρR asymmetry, and a 30% increase in the fusion yield.
- Research Organization:
- Univ. of Rochester, NY (United States). Lab. for Laser Energetics
- Sponsoring Organization:
- USDOE; USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0003856
- OSTI ID:
- 1774605
- Alternate ID(s):
- OSTI ID: 1773918
- Journal Information:
- Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 4 Vol. 28; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Mitigation of mode-one asymmetry in laser-direct-drive inertial confinement fusion implosions
Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule
Dataset
·
Wed Apr 07 00:00:00 EDT 2021
·
OSTI ID:1887853
Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule
Journal Article
·
Fri Jul 15 00:00:00 EDT 2016
· Physics of Plasmas
·
OSTI ID:22599998