skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact, Low-Cost, Light-Weight, Superconducting, Ironless Cyclotrons for Hadron Radiotherapy

Dataset ·
DOI:https://doi.org/10.7910/DVN/RPON1M· OSTI ID:1881423

Superconducting cyclotrons are increasingly employed for proton beam radiotherapy treatment (PBRT). The use of superconductivity in a cyclotron design can reduce its mass by an order of magnitude and size by a factor of 3-4 over conventional resistive magnet technology, yielding significant reduction in overall cost of the device, the accelerator vault, and its infrastructure, as well as reduced operating costs. At MIT, previous work was focused on developing a very high field (9 T at the pole face) superconducting synchrocyclotron that resulted in a highly compact device that is about an order of magnitude lighter, and much smaller in diameter than a conventional, resistive cyclotron. The results of the study reported here were focused on a conceptual design for a compact superconducting synchrocyclotron to demonstrate the possibility to further reduce its weight by almost another order of magnitude by eliminating all iron from the device. In the absence of magnetic iron poles, the magnetic field profile in the beam gap is achieved through a set of main superconducting split pair coils energized in series with a set of distributed field-shaping superconducting coils. External magnetic field shielding is achieved through a set of outer, superconducting ring coils, also connected in series with the other coils, to cancel the stray magnetic field. These shielding coils replace the heavy iron yoke which is the conventional method to return the magnetic flux. It is noted that the 10 Gauss surface is located at a radius of about 3.5 m comparable in both ironless and conventional devices, even in the absence of iron in the ironless device. An important result from eliminating all magnetic iron in the flux circuit is the resulting linear relationship between the operating current and the magnetic field intensity. In the case with iron, the saturation of the magnetic field forces operation at one value of magnetic field. This feature design then enables continuous beam energy variation without the use of an energy degrader, thus eliminating secondary radiation during the in-depth beam scanning, increasing the ion current delivered to the patient and improving the beam quality. The beam energy is determined by the magnetic field strength at the extraction radius, and changing the field enables selection of the final beam energy. The magnetic field can be adjusted while maintaining the needed radial field profile.

Research Organization:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
SC0013499
OSTI ID:
1881423
Country of Publication:
United States
Language:
English

Cited By (1)


Similar Records

Related Subjects