Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Line Faults Classification Using Machine Learning on Three Phase Voltages Extracted from Large Dataset of PMU Measurements

Conference · · Proceedings of the Annual Hawaii International Conference on System Sciences Proceedings of the 55th Hawaii International Conference on System Sciences

An end-to-end supervised learning method was developed to classify transmission line faults in a two-year field-recorded dataset that includes synchronized measurements of three-phase voltages recorded by 38 phasor measurement units (PMUs) sparsely located in the US Western Grid interconnection. Statistical analysis was performed to extract features from this large dataset to train the support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) classifiers. The training further leverages a simulated dataset from a synthetic grid with 12 PMUs to increase the number of types of faults infrequently seen in the field-recorded dataset. Training the classification models with the combined dataset resulted in a classification accuracy of 98.58%. This is a significant improvement over 86.87% to 87.17% accuracy obtained by relying on the field-recorded dataset alone.

Research Organization:
Texas A&M Engineering Experiment Station
Sponsoring Organization:
U.S. Department of Energy
DOE Contract Number:
OE0000913
OSTI ID:
1874493
Journal Information:
Proceedings of the Annual Hawaii International Conference on System Sciences Proceedings of the 55th Hawaii International Conference on System Sciences, Journal Name: Proceedings of the Annual Hawaii International Conference on System Sciences Proceedings of the 55th Hawaii International Conference on System Sciences; ISSN 2572-6862
Country of Publication:
United States
Language:
English

Similar Records

Line Faults Classification Using Machine Learning on Three Phase Voltages Extracted from Large Dataset of PMU Measurements
Journal Article · Mon Jan 03 23:00:00 EST 2022 · Proceedings of the Annual Hawaii International Conference on System Sciences · OSTI ID:1891312

Use of Machine Learning on PMU Data for Transmission System Fault Analysis
Conference · Sun Aug 28 00:00:00 EDT 2022 · OSTI ID:1891317

Fault Detection Utilizing Convolution Neural Network on Timeseries Synchrophasor Data From Phasor Measurement Units
Journal Article · Mon Dec 13 23:00:00 EST 2021 · IEEE Transactions on Power Systems · OSTI ID:1874491

Related Subjects