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Abstract

An end-to-end supervised learning method was
developed to classify transmission line faults in a two-
year field-recorded dataset that includes synchronized
measurements of three-phase voltages recorded by 38
phasor measurement units (PMUs) sparsely located in
the US Western Grid interconnection. Statistical anal-
ysis was performed to extract features from this large
dataset to train the support vector machine (SVM),
random forest (RF), and extreme gradient boosting
(XGBoost) classifiers. The training further leverages
a simulated dataset from a synthetic grid with 12
PMUs to increase the number of types of faults infre-
quently seen in the field-recorded dataset. Training
the classification models with the combined dataset re-
sulted in a classification accuracy of 98.58%. This is
a significant improvement over 86.87% to 87.17% ac-
curacy obtained by relying on the field-recorded da-
taset alone.

1. Introduction

In recent years, synchrophasor technology has
been complementing legacy supervisory control and
data acquisition (SCADA) systems [1]. The benefit of
using PMUs is their ability to take synchronized
phasor measurements at 30 frames per second (fps) or
higher. This allows utility operators to monitor the
power system with much higher data resolution when
compared to the unsynchronized measurement taken
by the SCADA scan every few seconds [1, 2]. The goal
of real-time automated detection of short-duration
events, such as faults, has become more attainable.
However, the high data reporting rate coupled with a
steady increase in the number of PMUs deployed in
the power grid makes fault classification processing of
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historical or real-time streaming PMU data increas-
ingly challenging. This greatly increases the interest in
applying machine learning (ML) technologies to auto-
matically process and analyze the captured PMU da-
tasets for efficient and accurate fault classification.

Several methods of feature extraction and ML
techniques have been studied to manage a large vol-
ume of data in the past.

Principal component analysis (PCA) was applied
to reduce the dimensionality of the dataset collected
from PMUs to enable event detection at early stages
[3]. The same method has been used to detect complex
cascading events [4]. Minimum volume closing ellip-
soid (MVEE) was used as the method of feature ex-
traction [5], followed by the agglomerative hierar-
chical clustering method for event classification. Other
event detection methods include detrended fluctuation
analysis [6], fast variant of discrete S-transform [7],
and signal energy transform [8], among others [9,10].
The normalized value of the wavelet coefficient en-
ergy was used as a feature engineering method to de-
tect events [11]. More recently, dynamic program-
ming-based swinging door ending has been used to
precisely pinpoint the start time of events [12]. Some
studies also investigated the application of event de-
tection in distribution networks using Micro-PMU
data, such as in [13], where the performances of SVM,
KNN, and decision tree for event detection were com-
pared. A wavelet transform-based feature engineering
method was used to generate inputs for the Convolu-
tional Neural Network classification model [14].

We propose an innovative feature engineering and
ML approach to automatically classify different types
of faults from historical PMU datasets. The main con-
tribution is in the ability to improve the accuracy of the
classification by supplementing sparsely field-rec-
orded PMU data with simulated data in cases where



the number of events of certain types is insufficiently
observed in the field recordings. Our method is applied
to signals that have been detected as events by another
model, and we classify an event to a line fault type.

The background of the difficulties in using sparse
PMU measurements for fault analysis is discussed in
Section 2. Insights into the field-recorded and simu-
lated data used to extract the features are given in Sec-
tion 3. Section 4 elaborates on how datasets have been
utilized. Section 5 introduces the ML classifiers and
explains the feature extraction and labeling. The ex-
periments and results for the ML classifiers are pre-
sented in Section 6. The conclusions are drawn in Sec-
tion 7, followed by References.

2. Background

There are 11 types of faults that may occur on a
transmission line (three phases of the power system
are marked as A, B, C, and G stands for ground): A-G,
B-G, C-G, AB, AC, BC, AB-G, BC-G, CA-G, ABC,
and ABC-G, which can be generalized as P-G, PP, PP-
G, 3P, and 3P-G. To classify the line faults, we extract
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the three-phase voltages from the PMU measurements.
By doing so, we encounter two problems.

Problem 1: It is difficult to separate PP (or 3P)
from PP-G (or 3P-G) faults using field-recorded data.
The voltages may be measured at a distance from the
fault location because of the sparsity of PMU locations
(less than 5% of buses are covered by PMUs), which
makes the voltage signal less distinguishable among
different fault types. In addition, noise and system im-
balance are adding challenges in differentiating these
types of faults.

Problem 2: There are fewer examples of PP, PP-
G, 3P, and 3P-G faults compared to P-G faults in the
field-recorded dataset. Owing to the statistical rarity
of occurrence, the PMU recordings have an uneven
representation of fault types (phase-to-ground faults
are much more frequent than any other type).

We further illustrate Problem I in Figures 1 and
2, where the three-phase voltage measurements for
phase-to-phase (AB) and phase-to-phase-to-ground
(AB-G) faults are compared to the corresponding
PMU measurements respectively obtained from simu-
lated faults. The measurements were visualized using
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Figure 1. AB fault — Comparison of Field-recorded (top) and simulated (bottom) PMU data (left to
right: phases A, B and C)
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Figure 2. AB-G Fault Events — Comparison of Field-recorded (top) and simulated (bottom) PMU
data (left to right: phases A, B and C)



OSIsoft PI Vision software [15]. We make two obser-
vations based on Figures 1 and 2:

Observation 1 based on Figure 1. It is not possi-
ble to obtain field-recorded fault measurements that
match the same event using simulated data because of
noise and system imbalance. If we observe Figure 1
with the AB fault, we can see that the simulated exam-
ple exhibits the same pre-fault voltage level in all three
phases, equal voltage drops in phases A and B, and a
much smaller voltage drop in phase C compared to
phases A and B, which is expected for a perfectly sym-
metrical system during the AB fault. However, the
field-recorded example in Figure 1 demonstrates that
there is a difference between both the pre-fault voltage
levels and voltage drops between phases A and B dur-
ing the same type of AB fault.

Observation 2 based on Figures 1 and 2: It is dif-
ficult to separate fault AB from AB-G in the field-rec-
orded dataset. The two cases that exhibit the most sim-
ilarities in field-recorded examples are phase-to-phase
and phase-to-phase-to-ground waveforms, as shown in
Figures 1 and 2. The bottom three waveforms in each
figure were obtained from the simulation. The simu-
lated waveform examples in Figures 1 and 2 demon-
strate that it is easy to differentiate fault AB from AB-
G because the AB-G fault waveform always has a
larger voltage drop in all phases than AB fault. The
difference is not clearly detectable in field-recorded
signals, as seen in the corresponding top three wave-
forms in Figures 1 and 2, where it is much more diffi-
cult to distinguish between fault AB and AB-G record-
ings. These two cases (AB and AB-G) need to select
very precise thresholds to differentiate them automat-
ically, which becomes challenging considering that in
many scenarios, these thresholds might be exceeded
due to noise or different proximity of PMUs to the
faults.

Problem 2 is illustrated in Figure 3, which shows
uneven statistics of different fault types in the field-
recorded data collected in the Western Interconnection
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Figure 3. Distribution of labeled faults in field-
recorded data

of the USA for a period of two years. As an example,
the fault type P-G has far more recorded cases than the
fault types of PP and PP-G combined.

Based on the above observations, our hypothesis
is that both problems might be addressed by enhancing
training data by carefully selecting PMU recordings of
simulated measurements of incorrectly or insuffi-
ciently represented fault types in the field-recorded
data. The combined field-recorded and simulated
PMU measurement data were used to train ML algo-
rithms to validate the hypothesis that the resulting
models are more accurate than models trained on field-
recorded data alone.

In the next section, we discuss the two sources of
data by providing further details.

3. PMU Measurement Data

Field-recorded PMU measurement data provided
by electric utilities and simulated data from a synthetic
grid were used for this study. After visual inspection
of field-recorded current magnitude measurements, it
was observed that the current magnitude change was
not as prominent as the change observed in the voltage
magnitude due to the large distance of PMUs from the
fault location for most events in the dataset, so the cur-
rents were not used. Both datasets were preprocessed
to extract the three-phase measurements of the voltage
magnitude. Next, the steps are taken to extract the fea-
tures based on a statistical analysis of 2-second data
windows. The duration of the time window was deter-
mined empirically after multiple experiments on the
simulated data. This window selection provides high
accuracy in terms of line fault-type classification. The
simulated data are integrated into the field-recorded
data to provide a more balanced training dataset for
ML classification algorithms.

3.1. Field-Recorded PMU Data

3.1.1. Data Description. Datasets used include:

e Synchrophasor measurements from 38 PMUs lo-
cated in the Western Interconnection of the USA
were collected over a period of two years. The da-
taset is anonymized by the provider by removing
information about geographical locations and any
physical and technological characteristics of the
PMUs or the electric grid to which they are con-
nected. The PMUs under study have reported
measurements of voltage and current magnitude
and angle for each phase, positive sequence volt-
age and current magnitude and angle, frequency,
and rate of change of frequency. For the reasons
explained earlier, in this experiment, only the



three-phase voltage magnitudes are used to de-
velop an automatic labeling system according to
the phases affected by the fault.

e Historical event logs for a period of two years are
stored as a CSV file. The event logs assigned by
the data provider have inaccurate timestamps for
the event start/stop times because the associated
logs came from SCADA and were entered manu-
ally, which did not provide sufficient and accurate
time-related details. We performed visual inspec-
tion to determine the precise start time of each
event and create a 2-second time window ensur-
ing that the event is contained within this window.
Some of the events have a descriptor field that
specifies the phases affected by the event. In some
cases, this descriptor was provided in the form of
P-G (phase-to-ground) and P-P (phase-to-phase)
without naming the phase. In these cases, visual
inspection of the three-phase voltage magnitudes
was applied to determine the affected phase (A,
B, or C).

3.1.2. Data Preparation. While a dataset spanned
field-recorded PMU measurements from 43 PMUs
over a period of two years (2016-2017), 38 PMUs
were selected for feature extraction because of a large
fraction of bad data in the remaining five [16]. The
data quality issues included missing and duplicate
data, an excessive number of outliers, flat 60 Hz fre-
quency recordings, and erroneous time tags. Because
the data were stored in the form of Apache Parquet
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files, Apache Spark [17] was used to retrieve the data.
Python [18] was then used to implement the required
analysis to prepare the data for the experiment. This
stage focuses first on running the raw measurements
through calculations to extract six features, as de-
scribed in Section 4.1. These six features were used to
decide which type of fault would be a correct label for
an event, and the events were also centered within the
2-second windows to avoid issues with the edges.

3.2. Simulated PMU Data

3.2.1. Data Description. For this research, Quanta
Technology’s Protection and Control test facility in
Raleigh North Carolina was used to create a simulated
dataset. The core element of the simulation system was
an RTDS NovarCor real-time simulation system with
two cores. Twelve PMUs (four actual PMU, i.e.,
PMUI to PMU4, and eight software-emulated PMUs)
were placed on a synthetic IEEE 14-Bus Power system
(Figure 4) to monitor simulated transmission line fault
events. The simulated dataset includes measurements
from 1,350 simulated fault events at different locations
with multiple combinations of fault resistances, loca-
tions, and types. PMU data are streamed to a phasor
data concentrator (PDC) (Figure 5) in the IEEE
C37.118 protocol, and the data are archived and as-
sembled to create the simulated dataset.
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Figure 4. PMU placement in the synthetic IEEE 14-bus power system



The simulated fault events on all lines included

also line fault clearing and reclosing sequences. Fol-
lowing the fast fault clearing, automatic line reclosing
is simulated for all single-phase-to-ground faults, and
manual line switching by human operators was simu-
lated for all multi-phase faults. The simulated dataset
has a separate event log file in which information for
each simulated fault event (i.e., time, location, re-
sistance, and type) is provided.
3.2.2. Data Preparation. The data in the simulated
dataset for each PMU include the magnitude and angle
for the positive sequence and three-phase voltage and
current synchrophasors, the frequency, and the rate of
change of frequency (ROCOF). For the fault classifi-
cation training, the magnitude of each phase’s voltage
phasor was extracted for all three phases, namely A,
B, and C. Data windowing was performed by splitting
the time-series data into consecutive windows of 2 s
each.

4.Methodology

In this section, we discuss our proposed method
in three subsections: feature extraction, labeling, and
integration of field-recorded and simulated data.

4.1. Feature Extraction

After data preparation, six features were extracted
based on three-phase voltage measurements: ABuifr,
BCuitt, CAditr, XYaitr, YZaitr, and ZXqifr. These features
were chosen because they characterize the relative
voltage drops that occur in each phase owing to a line
fault. The features were extracted using the following
four steps:

Power System Simulation System
RTDS

3 phase voltage and
current stream 100 us
sampling rate

Control Computer

Test Plan

Figure 5. RTDS faults simulation framework

e Determine range of voltage for each PMU
e  Aggregate range of voltage for all PMUs

e Calculate difference between each two
phases
e Determine ratio of differences between each
two phases
Below, each step is discussed in detail.
Step 1- The voltage range is calculated for each of the
38 PMUs (or 12 PMUs in simulations) over a 2-second
window, where the minimum voltage measurement is
subtracted from the maximum voltage measurement,
and then divided by the average magnitude of all data
points for each phase @i, as shown in equation 1.

max (Vnag (4,)) = min (Vinag (4,))
Avg (Viag (¢1))

where V,,,,(¢,) stands for the voltage magnitude of

phase ¢ (A, B, or C) for the im 2-second window.

(M

Vrange(¢i) =

Step 2- These ranges are then summed up for all PMUs
and divided by the number of PMU, as in equation 2.

Vrange (¢L)
number of PMUs

number of PMUs

SUM (V) = )
i=1

Step 3- The difference between each phase

ABuift, BCaitr and CAuitr is then calculated, and the signs

of these three quantities are considered as the first

three features.
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ABgifr = sign(AqB) (6)
BCyifr = sign(B;,C) (7
CAgisy = sign(CyoA) 3

Finally, the ratio between the differences in the voltage
range mentioned in the third step is determined such
that the larger value is always divided by the smaller
value. For example, if abs(4,,B) > abs(B,C), then
R(AB,,BC) = abs(4,,B) / abs(B,,C). These ratios are then
used to form the remaining three features computed as
described in equations (12-14):

X = R(AB;,BC) )
Y = R(BC,CA) (10)
Z = R(CA,AB) (11)
XYyipr = sign(X —Y) (12)
YZgipr = sign(Y —Z) (13)
ZXqyipp = sign(Z — X) (14)

Va,Vb and V. stand for voltage of Phase A, B and C;
ABuirt, BCaitr and CAuisr stand for the difference be-
tween each two phases.

AVG stands for average magnitude of all data points
for each phase Oi.

Here, X, Y and Z calculate the ratio between the dif-
ferences in the voltage by dividing the large value by
the small value XY aifr, Y Zairr and ZXaifr , and then they
are compared the difference in ratio between different
pair of signals.

4.2. Labeling

The Intersecting sub-signal time windows are la-
beled with an event log provided with the dataset. This
step produces a binary label, which indicates whether
an event occurred at this sub-signal or if there was a
normal operation. The event log also contains a field
“Descriptor” that has information on the type of fault
that occurred (e.g., A-G, AB, ABC, etc.).

Depending on the values of A4Buitr, BCaitr, CAaitr,
XYairr, YZaitr, and ZXaitr that are extracted as described
in Section 4.1, the type of fault can be automatically
determined as described below in Table 1. Automatic
labeling was then performed for multiclass line faults,
as shown in Table 1. Each label represents the occur-
rence of line fault type. For example, a phase-to-

ground fault (i.e., A-G, B-G, or C-G) is a combination
of four labels. The labels are assigned as follows: for
a phase-to-ground fault, if ABgitr = 1 and CAairr = -1
and YZarr = 1 and ZXair = -1, then the label will be
“A-G.” [19].

The other line fault labels are listed in Table 1.
The automatic labeling in Table 1 only works well for
the separation of the A-G, B-G, and C-G faults. Re-
garding the PP, PP-G, and 3P faults, the majority of
the events were mislabeled. Moreover, the 2-second
windows chosen for analysis do not allow for the
recognition of faults that might evolve to a different
fault within this time window. Rather, the labeling al-
gorithm will only recognize the dominant fault whose
effect is greater on the features. Therefore, this auto-
matic labeling system was combined with the ma-
chine-learning model described in Section 5.

4.3. Integration of field-recorded and simu-
lated data

Because of the limited number of examples per
type of line fault in field-recorded PMU data (Figure
3), as discussed in the background section, simulated
data with much more prominent fault types are com-
bined with field-recorded data to generate an inte-
grated training set (Figure 6) aimed at boosting the line
fault classification. As shown in Figure 3, some types
of faults, such as PP, PP-G, and 3P, are less frequent
in the field-recorded data. In the integrated version
presented in Figure 6, simulated examples are added

Table 1. Automatic labeling for seven types
of line fault

Extracted Features Type of faults
ABdirt = 1 and CAaier = -1 and | “A-G”

YZairr =1 and ZXuirr = -1
ABgditt = -1 and BCaitr = 1 and | “B-G”
XYaite= -1 and ZXairr= 1
BCuitt = -1 and CAairr = 1 and | “C-G”
XYditre= 1 and YZirr = -1
BCairr = 1 and CAairr = -1 and | “AB/AB-G”
XYdire= 1 and YZirr = -1
ABdiet = -1 and CAairr = 1 and | “BC/BC-G”
YZsite = 1 and ZXuqite = -1)

ABditr = 1 and BCairr = -1 and | “CA/CA-G”
XYiirr = -1 and ZXaier = 1

“ABC/ABC-G” will be assigned | “ABC/ABC-G”
if the line fault is not one from
all previous combinations
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to ensure that each fault type has the same frequency
of occurrence in the dataset. The data integration pro-
cess of the simulated data and field-recorded data is
illustrated in Figure 7.

Table 2 shows the increase in the number of each
fault type after the simulated data are added to field-
recorded data for each line fault type, resulting in
much more balanced classes vs. relying on field-rec-
orded training data alone.

4.4. Limitations

The model has some limitations: (1) In a real-time
scenario, the classification model will depend on a
fault event detection model that can detect fault events
out of all types of events in each 2-second window.
With the streaming data, the classification will be de-
layed for the time needed to detect the fault. (2) The
proposed method cannot be applied to SCADA meas-
urements because SCADA only takes samples every
two seconds or longer. The resolution of the SCADA
measurements is too low as compared to the 30-60
samples/sec of PMUs that would not be sufficient for
this application.

Field-Recorded

Simulated Data Data

Integrated Data

Fault Type
A-G
B-G

3P (ABC, ABC-G)

Figure 7. Train a classifier by two sources of data

5. Data Modeling

In this study, three classification models were
considered to evaluate the proposed approach, and the
performance of each model was compared before and
after data integration. These three classifiers are
briefly discussed in this section.

5.1. Classifiers

5.1.1. SVM Classifier

The second tested algorithm is the support vector
machine (SVM) invented by Vapnik and Chervonenki
[20]. In its simplest type, an SVM is applied to binary
classification cases [21]. Becuase classifying the types
of line faults is a multiclass problem, we broke the
problem down into multiple binary classification
cases, which is also called one-vs-one. In the one-vs-
one approach, each classifier separates cases into two
classes, and comprising all one-vs-one classifiers leads
to a multiclass classifier [22]. This required training
twenty-one models for seven classes of faults. Each bi-
nary classification model predicts one class label and
selects the model with the most votes per a pair of clas-
ses.

Table 2. The number of faults before and after
data integration

Line fault type | Before integration | After integration
A-G 60 86
B-G 70 86
C-G 64 86
AB/AB-G 22 86
BC/BC-G 21 86
CA/CA-G 15 86
ABC/ABC-G 14 86




5.1.2. RF Classifier

The last ML algorithm considered is the random
forest classifier. Random forest is one of the most
commonly used ensembles learning algorithms, and it
is implemented [23] in the scikit-learn library (version
0.22.1) for Python, where default parameters are uti-
lized.

It consists of multiple classification decision
trees. Each new event is classified separately by each
of the decision trees, where each tree of the forest
gives a unit vote, assigning each input to the most
probable class label. The final rule on the class was
selected based on the maximum votes [24]. The num-
ber of trees in the forest and the depth of the trees re-
flecting hyperparameters should be chosen for each
specific problem. For instance, one of the hyperparam-
eters used in the RF classifier is max features that used
to determine the maximum number of features to con-
sider while looking for a split. Cross-entropy was used
as a loss function that measures the probabilities of bi-
nary cross-entropy for each class separately. Cross-en-
tropy is considered more popular in multiclass prob-
lems because it minimizes the difference between the
two probabilities for each pair of classes. The reason
for utilizing RF in our experiment is that RF is a fast
method, robust to noise, and it is an ensemble that can
successfully identify nonlinear patterns in the data.

5.1.3. XGBoost Classifier

The first algorithm used in our experiment is eX-
treme gradient boosting, which is known as XGBoost
[25]. The XGBoost classifier implemented in the

Table 3. Fault classification performance
across multiple evaluation metrics

Field-Recorded Data

Models Weighted | Weighted | F1-score
Precision | Recall

SVM 83.25% 91.03% 86.87.%

RF 83.31% 91.03% 86.89%

XGBoost | 84.13% 91.03% 87.17%

Micro_average_of_precision_recall 94.90%

Integrated Data

SVM 98.69% 98.62% 98.58%*

RF 98.08% 97.93% 97.83%

XGBoost | 98.25% 97.93% 97.88%

Micro_average_of_precision_recall 99.20%

The largest metric values are bolded, while “*’ in-
dicates SVM performance are relatively high
compared to RF and XGBoost

scikit-learn library (version 0.18.1) for Python with
default parameters was utilized. XGBoost is a deci-
sion-tree-based ensemble machine learning algorithm
that uses a gradient-boosting framework [26].
XGBoost learning parameter was configured to mul-
ticlass soft probability to deal with multi-class classi-
fication tasks. The output is the predicted probability
of each data point belonging to each class.XGBoost
consists of multiple classification decision trees.Each
line fault is classified separately by each of the deci-
sion trees, where each tree puts the classified line fault
in one of the classes, as described in Tablel.

6. Classifier Evaluation

We compare the results of evaluating the SVM,
RF, and XGBoost classifiers trained on field-recorded
and integrated field and simulated data. In the field-
recorded data, the data were temporally split. We
trained the models using an integrated set consisting
of field-recorded data from 2016 and simulated data,
which were evaluated only on data from 2017, which
is “unseen” data. The evaluation results for the out-
of-sample field-recoreded data are shown in Table 3.

The performance of the fault-type classification
models on out-of-sample filed-recorded data was
measured using weighted precision, weighted recall,
and F1 score, which are suitable measures for
multiclass classification problems [27]. The obtained
results provide evidence that training any model on
integrated data significantly improves the test
accuracy. The difference in accuracy among SVM,
RF, and XGBoost models was minimal when relying
on integrated training data, whereas this was not the
case when relying only on filed-recorded data alone
(XGBoost was less accurate from SV and RF).

We show the SVM results in more detail for both
cases in Figure 8 (i.e., training on filed-recorded data)
and Figure 9 (i.e., using integrated training data).
These results provide additional evidence that the
accuracy using field-recorded PMU data alone was
lower when compared to relying on combined field-
recorded data enhanced by simulated faults to
compensate for the types least present in the field-
recorded data.

For a multiclass classification problem, precision-
recall measurement was utilized on the SVM classifier
for each type of fault using filed-recorded data and in-
tegrated data, respectively. The micro-average preci-
sion results in Table 3 show an increase from 94.90%
to0 99.20% when using integrated data compared to the
overall performance for a seven-class problem). The
micro-average precision scores are computed as the
sum of true positives for all the classes divided by all
positive predictions [28][29], as in equation 15:



TPsum
TPsum + FPsum

(15)

Micro_avg_of precision_recall =

As aresult, the performance was significantly im-
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Figure 8. Confusion matrix for SVM trained on
field-recorded data
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integrated data

proved when training the model on integrated data for
types of faults insufficiently present in field-recorded
training data because the data deficiencies were re-
duced by including simulated cases of these types.

7. Conclusions

In this study, we propose a novel method for line
fault classification using machine learning on a large
dataset of PMU measurements. The uniqueness and
benefits of our approach are as follows:

e  QOur approach integrates simulated and field-
recorded three-phase voltage data to classify
faults in the electric grid. This data enhance-
ment has helped train more accurate ML
models to classify faults in the 2-second win-
dows.

e It has been demonstrated that it is beneficial
for train classification models using inte-
grated field-recorded PMU data and simula-
tions vs. relying on filed-recorded data alone
when certain types of events of interest are
insufficiently represented in field-recorded
data over the training period.

e An innovative feature engineering tool and
ML approach were developed to automati-
cally classify different types of faults from
historical PMU datasets.

e Data integration created a valuable dataset
that increased line fault type classification ac-
curacy with rare examples in the field rec-
orded data.

e Extracted features and automatic labeling
have shown patterns for all seven-line faults
that have aided ML models to learn these pat-
terns and generalized them to unseen data.

Disclaimer

This report was prepared as an account of work
sponsored by an agency of the United States govern-
ment. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal li-
ability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus,
product, or process disclosed or represented that its use
would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The
views and opinions of the authors expressed herein do
not necessarily state or reflect those of the United
States Government or any agency thereof.
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