Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover
- Indiana Univ., Bloomington, IN (United States)
- California State University, Fresno, CA (United States)
- Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Spatial partitioning of chemical processes is an important attribute of many biological systems, the effect of which is reflected in the high efficiency of enzymes found within otherwise chaotic cellular environments. Barriers, often provided through the formation of compartments or phase segregation, gate the access of macromolecules and small molecules within the cell and provide an added level of metabolic control. Taking inspiration from nature, we have designed virus-like particles (VLPs) as nanoreactor compartments that sequester enzyme catalysts and have used these as building blocks to construct 3D protein macromolecular framework (PMF) materials, which are structurally characterized using small-angle X-ray scattering (SAXS). Additionally, the highly charged PMFs form a separate phase in suspension, and by tuning the ionic strength, we show positively charged molecules preferentially partition into the PMF, while negatively charged molecules are excluded. This molecular partitioning was exploited to tune the catalytic activity of enzymes enclosed within the individual particles in the PMF, the results of which showed that positively charged substrates had turnover rates that were 8500× faster than their negatively charged counterparts. Moreover, the catalytic PMF led to cooperative behavior resulting in charge dependent trends opposite to those observed with individual P22 nanoreactor particles.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- National Science Foundation (NSF); USDOE
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1869210
- Journal Information:
- ACS Nano, Journal Name: ACS Nano Journal Issue: 10 Vol. 15; ISSN 1936-0851
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Reversal of Catalytic Material Substrate Selectivity through Partitioning of Polymers in Hierarchically Ordered Virus-like Particle Frameworks
Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions
Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles
Journal Article
·
Thu Oct 19 20:00:00 EDT 2023
· Chemistry of Materials
·
OSTI ID:2558072
Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions
Journal Article
·
Tue Jul 18 20:00:00 EDT 2023
· Biomacromolecules
·
OSTI ID:2404873
Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles
Journal Article
·
Mon Mar 19 20:00:00 EDT 2018
· ACS Nano
·
OSTI ID:1461340