High Order Strong Stability Preserving MultiDerivative Implicit and IMEX Runge--Kutta Methods with Asymptotic Preserving Properties
- Univ. of Massachusetts, Dartmouth, MA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Purdue Univ., West Lafayette, IN (United States)
- Univ. of Maryland, College Park, MD (United States)
In this article we present a class of high order unconditionally strong stability preserving (SSP) implicit two-derivative Runge--Kutta schemes and SSP implicit-explicit (IMEX) multi-derivative Runge--Kutta schemes where the time-step restriction is independent of the stiff term. The unconditional SSP property for a method of order $p>2$ is unique among SSP methods and depends on a backward-in-time assumption on the derivative of the operator. We show that this backward derivative condition is satisfied in many relevant cases where SSP IMEX schemes are desired. We devise unconditionally SSP implicit Runge--Kutta schemes of order up to $p=4$ and IMEX Runge--Kutta schemes of order up to $p=3$. For the multiderivative IMEX schemes, we also derive and present the order conditions, which have not appeared previously. The unconditional SSP condition ensures that these methods are positivity preserving, and we present sufficient conditions under which such methods are also asymptotic preserving when applied to a range of problems, including a hyperbolic relaxation system, the Broadwell model, and the Bhatnagar--Gross--Krook kinetic equation. We present numerical results to support the theoretical results on a variety of problems.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE; US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1867763
- Journal Information:
- SIAM Journal on Numerical Analysis, Journal Name: SIAM Journal on Numerical Analysis Journal Issue: 1 Vol. 60; ISSN 0036-1429
- Publisher:
- Society for Industrial and Applied Mathematics (SIAM)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Strong Stability Preserving Integrating Factor Two-Step Runge-Kutta Methods
A review of high order strong stability preserving two-derivative explicit, implicit, and IMEX methods