Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

HyMARC Seedling: Optimized Hydrogen Adsorbents via Machine Learning and Crystal Engineering

Technical Report ·
DOI:https://doi.org/10.2172/1854009· OSTI ID:1854009
 [1];  [2];  [2];  [2];  [2];  [3];  [3]
  1. Univ. of Michigan, Ann Arbor, MI (United States); University of Texas at Austin
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Ford Motor Company, Dearborn, MI (United States)

This final report is presented in two parts: In Part 1, the H2 capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g/cm3) in combination with high surface areas (>5,300 m2/g), void fractions ($0.90), and pore volumes (>3.3 cm3/g). The relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The most important features for predicting H2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available on the web, allowing for rapid and accurate predictions of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single crystallographic feature. In part 2, ways to improve the poor powder packing density of MOFs is discussed. More specifically, a strategy that improves packing efficiency and volumetric hydrogen gas storage density dramatically through engineered morphologies and controlled-crystal size distributions is presented that holds promise for maximizing storage capacity for a given MOF. The packing density improvement, demonstrated for the benchmark sorbent MOF-5, leads to a significant enhancement of volumetric hydrogen storage performance relative to commercial MOF-5. System model projections demonstrate that engineering of crystal morphology/size or use of a bimodal distribution of cubic crystal sizes in tandem with system optimization can surpass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE targets 2020 volumetric capacity (30 g/L). Finally, a critical link between improved powder packing density and reduced damage upon compaction is revealed leading to sorbents with both high surface area and high density.

Research Organization:
University of Michigan, Ann Arbor, MI (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation
Contributing Organization:
Ford Motor Company
DOE Contract Number:
EE0008093
OSTI ID:
1854009
Report Number(s):
DOE-UMICH-8093
Country of Publication:
United States
Language:
English

Similar Records

Surviving Under Pressure: The Role of Solvent, Crystal Size, and Morphology During Pelletization of Metal–Organic Frameworks
Journal Article · Thu Aug 12 00:00:00 EDT 2021 · ACS Applied Materials and Interfaces · OSTI ID:1830619

Metal-Organic Frameworks (MOFs) Containing Frustrated Lewis Pairs (FLP) for H2 Storage at Ambient Temperature
Technical Report · Thu Sep 18 20:00:00 EDT 2025 · OSTI ID:3006225

Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications
Technical Report · Thu Nov 30 23:00:00 EST 2017 · OSTI ID:1411624