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Project Objectives

Objective 1: Apply machine learning (ML) techniques to design and experimentally demonstrate new MOFs
having usable volumetric capacities exceeding SO H, g/L (single-crystal/pressure swing), without compromising
gravimetric capacity, kinetic performance, or reversibility.

Objective 2: Control MOF crystal morphology and crystallite size distribution to increase packing density of
target high capacity MOF by at least 30% (compared to its powder tap density) with less than 15% decrease in
gravimetric performance.

Technical Scope Summary

This project aims to overcome volumetric limitations associated with physisorptive hydrogen storage at both the
materials and system level. This goal will be achieved using a combination of computational techniques and ex-
perimental synthesis and testing. Our efforts will target storage media based on metal-organic frameworks
(MOFs), a class of hydrogen adsorbents with highly tunable properties.

At the materials level, machine learning methods will be applied to our database of 476,007 real and hypothetical
MOFs. This analysis will guide the discovery of new compounds that can break through the so-called Volumetric
Ceiling. This performance ceiling was identified in our prior screening studies; it reveals that no known MOFs can
surpass a usable volumetric capacity of 40 g H2/L (assuming an isothermal pressure swing between 100 and S bar
at 77 K). In contrast to the conventional approach to MOF discovery, where capacity is predicted from a known
crystal structure, this project aims to invert this process and ‘reverse engineer’ optimal MOFs with the aid of ma-
chine learning. Starting instead from a target hydrogen capacity, MOF crystallographic properties such as surface
area, pore volume, etc. will be identified. Next, these properties will be translated into specific combinations of
linkers, metal clusters, and MOF topologies consistent with those properties. The end result will be a catalog of
MOFs that are purpose built for high volumetric capacity. The most promising compounds will be synthesized
and assessed experimentally with respect to their usable hydrogen capacities.

At the system level, we will develop crystal growth and processing techniques that result in MOF- based adsorbent
beds with low void fractions. Analysis by the Hydrogen Storage Engineering Center of Excellence has shown that
inefficient materials packing can result in density reductions of more than 60% compared to the single-crystal level.
Therefore, packing inefficiencies have the potential to negate improvements in volumetric performance achieved
at the materials level. Strategies to engineer particle properties and pack adsorbents with low void fraction — be-
yond routine “shake and compress” techniques — have not been widely explored. This project aims to close this
performance gap by developing synthetic procedures that optimize particle morphology and size distribution.



Organization of this Final Report

This final project report is presented in two parts. Part 1 describes efforts focused on materials development.
This includes the identification, synthesis, and characterization of MOFs that exhibit high volumetric and gravi-
metric capacities simultaneously. Part 2 describes the outcome of crystal engineering by controlling MOF crys-
tal morphology and crystallite size distribution.

PART 1: Materials Development

Introduction

Hydrogen (H.,) is considered to be a future automotive fuel.'® This potential reflects its high specific energy com-
pared to competing fuels such as natural gas and gasoline, and the ability of H, to be produced renewably and
consumed without CO, emissions.”” Nevertheless, the adoption of hydrogen in mobile applications such as fuel
cell (FC) vehicles has been limited by its low volumetric energy density.**” Consequently, the design of low-cost
H, storage systems that overcome these volumetric limitations has been the focus of recent research.**"'> At pre-
sent, FC vehicles employ storage systems based on gaseous H, compressed to pressures up to 700 bar."* This ap-
proach is costly and can incur limitations in driving range.”'"'>'*

Storage based on adsorption in porous hosts is an alternative to high-pressure compression."”” Due to their high
gravimetric densities, fast kinetics, and reversibility, metal-organic frameworks (MOFs) have emerged as one of
the most promising classes of hydrogen sorbents.”” MOFs are crystalline materials formed by the self-assembly of
inorganic metal clusters and organic linkers.'*** By virtue of their building-block structure and the large number
of potential components, the number of MOFs is potentially limitless.”** Further modifications to MOF chem-
istry can be achieved by introducing functional groups, substituting different metals, and by mixing metals and/or

linkers. 2628

Despite these many possibilities, a relatively small fraction of MOFs have been synthesized.””*® While the crystal
structures of these ‘real’ MOFs are available in the Cambridge Structural Database (CSD),**** many exhibit disor-
der, missing atoms, or have negligible porosity; consequently, these materials are not immediately amenable to
assessment via computational modeling.***'**

One way to bypass these complications is through computational design. To date, nearly a million ‘hypothetical’
MOFs have been reported, *%*4¢37# and it is reasonable to expect that many more materials will be proposed.*’
$! High-throughput screening using Grand Canonical Monte Carlo (GCMC)***¢ has been successful in identify-
ing promising candidates with superior gas storage capacities on sub-sets of these catalogs.****3*4¢3057-¢0 Neverthe-
less, given the large number of possibilities, a systematic search across all of these materials is challenging even



Table 1: Summary of recent studies that use machine learning (ML) to predict H: adsorption in MOFs. peys, Vf, vsa, mpd, lcd repre-
sent single crystal density, void fraction, volumetric surface area, maximum pore diameter, and largest cavity diameter, respectively.
R’, AUE, and RMSE represent the coefficient of determination, average unsigned error, and root-mean-square error, respectively.

Study ML Features ML Method Properties Predicted Accuracy
Anderson et Epsilon, temperature, pressure, peys, Total volumetric Ha for pres-
al. (2019 vf, vsa, mpd, lcd, alchemical cate- Neural network”” sures 0.1,1,5,35,65,and 100  AUE=0.75-2.93g-H, L'
’ cholate site density, unit cell volume bar at 77, 160, and 295 K
i - 2 = N \/ A [‘:‘ = -
Bucior et al. Energetics of MOF-guest interac- Multilinear regression pegv‘:jble I;letg xl‘)age i’?;;( RH (igléi{M SE = ;T ii
(2019)% tions with LASSO”” ity between ara g =31-4
g-Hz L

Ridge linear regression

Borboudakis 92 binary features based on linker, anfi sup;mrt vectorma- . H, storage capacity at 1 A'UE =0.47 (ridge regres-} 1
s  metal cluster, and 12 functional chine with polyno- sion), 0.50 (SVM) g-H. g'-
etal. (2017) . . barand 77 K
groups mial/Gaussian ker- MOEFE
nel77,79,80

Net H: capacity for pressure
Neural network” swing between 1 and 100 bar
at 77 and 298 K

Thornton et Adsorption energy, pays, Vf, gsa, vsa,
al. (2017)7 led

R*>=0.88; RMSE = 3.6 g-Ha
L»l

with high-throughput techniques."®! Furthermore, differences in the implementation (i.e., use of different temper-
ature/pressure conditions or interatomic potentials) can complicate comparisons between screening studies.
Thus, more efficient and consistent screening approaches are desirable for predicting the gas storage properties of
MOFs in existing and future databases.

Machine learning (ML) could provide a path forward.®** For ML to be helpful, access to high-quality training
data is essential. Unfortunately, training on experimental H, storage data in MOFs is non-trivial:">%66-¢8
mental uptake data is generally restricted to a relatively small number of MOFs, and can depend sensitively upon
the experimental conditions and the purity of the sam-

ple.>*”® Employing a dataset based on a consistent set of = Table 2. MOF datasets employed in this study.

experi-

Database Number of
computational predictions may be a better choice.®% Source Ldentity MOFs
Goldsmith et al.,* Chung et al.,* Real MOFs: 15,235
Moghadam et al.,”” Groom et al.*® UM?*+CoRE®*+CSD** !
Earlier work has demonstrated that accurate isotherms ~ Chungetal™ CoRE 2019 14,142
. . . Moghadam et al.,”” Groom et al.*® *CSD 2017 additional®® 48,696
for H, uptake in MOFs can be predicted using the  Martinetal® Mail-order™ 112
. . . Bao etal.*® In-silico deliverable*® 2,816
pseudo-Feynman-Hibbs potential (to describe Hz) com- 0 u» In-silico surface™ 5,885
: : : : : : Witman et al.* MOF-74 analogs* 61
bined with general interatomic potentials to describe the [ es o 13512
MOF."*%7 This approach was used to screen a database = GomezGualdron etal* Zr-MOFs* 204
. . . Wilmer et al.* Northwestern® 137,000
of 5,309 real MOFs, from which IRMOF-20 was identi-  aghajictal,” Boyd et al? **Univ. of Ottawa " 317,462
" . 83 83
fied and experimentally demonstrated to have a favorable é;‘;:t;elt s D rr e i S
balance of high gravimetric and volumetric H, density.*In  Lietal® MTV 11,55
Anderson et al.”? CSM-2018-1* 117
a follow-on study a larger database 0f 495,305 MOFs was  anderson etal. CSM-2018-11% £
. . . 4
compiled from several publicly-available databases (see ~ Andersorete CSM-2019-1% i
1¢) 1,29,31,33,36-40,45 ; Abmed etal In-house 8
Table S1 for details)."?31333¢-404 Eollowing a pre-screen Total 918,734

based on crystallographic properties and empirical corre-

. e *A subset of the CSD 2017 MOF dataset?*°whose crystallographic properties
latlons, the H, CapaCItleS of a subset 0f43’777 MOFs were were found to exhibit extremely low values (e.g GSA ~ 0) in a prior study.
evaluated using GCMC. Three additional MOFs — SNU- **A recent version of this database is available publicly;*"*> however, the present

. s study employs an earlier version® that was shared privately.
70" UMCM-9, and PCN-61 O/NU- 100 — were identified A curated subset of the Northwestern® database.
and shown experimentally to out-perform the leading
MOF candidate, IRMOEF-20.!



The database of MOF properties”' generated in these

Table 3. Machine learning regression algorithms employed

prior studies presents an opportunity to develop ML i, this work.
models that can predict H, uptake across even larger Machine Learning Algorithm Abbreviation
MOF datasets."”" Table 1 summarizes prior ML studies of Extremely Randomized Trees 043103104 ERT
. . Boosted Decision Trees®%%10% 103 104 BDT
H, storage in MOFs. (Reports employing ML for other Bagging with Decision Trees #310510% B/DT
adsorbates such as CH,, > CO,’*7, N,”*” are summa- Random FO}flest“':”’“"‘”'“’“ S I;F
. . Bagging with Random Forest**7410% B/RF
rized in Table S2.) To the best of our knowledge, ML was Gradient Boosting 0795102 105 10 GB
3 : : Decision Trees’6%0103104 DT
ﬁrSt uSEd to PI'EdlCt H2 uptake n Compounds from the Nu-Support Vector Machine with Radial Basis Function Nu-
Nanoporous Materials Genome.”® A neural network — (RBF)Kemelsmsossssionos SVM/RBE-K
77 . ces Support Vector Machine with RBF Kernel76799097,98,103104 SVM/RBE-K
(NN)”” was used to predict usable capacities on a test set Support Vector Machine with Linear Kernel 7965310304 SVM/L-K
of ~1000 compounds, including MOFs.” In the same Linear Regression™ ™ munisis LR
. ] . . Ridge Regression%,77,73,99,100,103,104 RR
year, Borboudakis et al.®® predicated H, capacities in 100 K-Nearest Neighbors %0101103103 K-NN
AdaBoost76,92,102, 103, 104 AB

MOFs using 92 binary features related to a MOF’s linker,
metal cluster, and functional group(s). Ridge linear re-
gression (RR)””7”% and support vector machine (SVM)”"*! algorithms were used to predict gravimetric capacity.
Later, Bucior et al** predicted the H, capacities of 50,000 MOFs extracted from the CSD using multi-linear regres-
sion (MLR).” The models were trained using the energetics of H,-MOF interactions and the usable volumetric
capacities predicted by GCMC. More recently, ML was used to predict H, storage capacities in 10S hypothetical
MOFs constructed from 17 different topologies, 4 distinct metal clusters, and S unique organic linkers.* NN/
models employing 11 features were trained to predict total volumetric uptake at various temperatures and pres-
sures.”

Expanding upon these prior reports, the present study applies ML to explore a large database of 918,734 known
and proposed MOFs. The database was assembled from a diverse collection of publicly-available MOF reposito-

ries,241745838431.33343640 and allows for a wide-ranging and consistent assessment of H, uptake in MOFs.

Here the extremely randomized trees (ERT)”"* algorithm was identified as the most accurate ML model for pre-
dicting H, uptake. A training set comprising 24,674 MOFs was sufficient to enable accurate predictions of usable
capacities across 820,039 unseen compounds.” These predictions were made using a small set of seven crystallo-
graphic features as input: single-crystal density, pore volume, gravimetric & volumetric surface area, void fraction,
largest cavity diameter, and pore limiting diameter. Importantly, ML identified 8,282 MOFs — 8,187 appropriate
for pressure swing operation and 95 for temperature/pressure swing use — with the potential to exceed both the
gravimetric and volumetric capacities of state-of-the-art materials. These compounds are comprised predomi-
nantly of hypothetical MOFs, and exhibit low densities (<0.31 g cm™) in combination with high surface areas (>
5,300 m* g'), void fractions (~0.90), and pore volumes (>3.3 cm® g'). In addition to identifying high-capacity
MOFs, the relative importance of the input features is quantified; dependencies on the ML algorithm and training
set size and are also assessed. The single most important features for predicting H, uptake are pore volume (for
gravimetric capacity) and void fraction (for volumetric capacity). A simplified model using only two input features
is demonstrated to predict capacities with high accuracy — within 0.2 wt.% and 1.4 g g-H, L' of more expensive
Monte Carlo calculations. The ML models are available for use via the web,* allowing for rapid and accurate pre-
dictions of hydrogen capacities with only a small amount of structural data required as input.

Methodology

MOF database

A database of crystal structures for 918,734 MOFs was created by combining 19 existing databases.
45,83,84,31,33,34,

1,29,41-

36-40T'able 2 summarizes the source databases and the number of MOFs contained in each. Out of these
19 databases, only the UM,*' CSD,*?° and CoRE**** databases contain data on MOFs that have been previously
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synthesized. (MOFs listed in these datasets are referred to as ‘real’ MOFs.) The remaining databases contain data
for proposed, or ‘hypothetical,” MOFs. The seven crystallographic properties for all MOFs in the database were
calculated using the zeo++ code?>****with a probe radius of 1.86 A. This data is available at the HyMARC data
hub.”" Additional details can be found in our prior work.! These properties include: single crystal density (d), pore
volume (pv), gravimetric surface area (gsa), volumetric surface area (vsa), void fraction (vf), largest cavity diam-
eter (Icd), and pore limiting diameter (pld).

A prior study examined a subset of the present database, wherein the hydrogen uptake in 495,305 MOFs was
estimated using the Chahine rule.”""* Subsequently, usable uptake in a portion of this subset comprising 43,777
MOFs predicted to be promising based on the Chahine rule was evaluated using Grand Canonical Monte Carlo
(GCMC). This GCMC-evaluated dataset contained a mix of real and hypothetical MOFs: 15,235 real MOFs
were sourced from the UM,*" CoRE,* and Cambridge Structural Databases,”*° and 28,542 hypothetical MOFs
were extracted from the Mail-order,* in silico deliverable,* in silico surface,®® MOF-74 analogs,* ToBaCCo,* Zr-
MOFs,* Northwestern,*® University of Ottawa,*”*”* and in-house' hypothetical MOF databases (see Ref. 1 or
Table S1 for details)."***333¢-4 Hydrogen uptake isotherms for two operating conditions were predicted: for an
isothermal pressure swing (PS) at T = 77 K between S and 100 bar, and for a combined temperature-pressure
swing (TPS) between 77 K/100 bar (filled state) and 160 K/ bar (empty state). Usable gravimetric (UG) and
volumetric (UV) capacities were then calculated based on the isotherm data.

In addition to the 43,777 MOFs examined in Ref. 1, in the present study GCMC isotherms were evaluated for an
additional 54,918 MOFs (see Ref. 1 and Section 3 of the SI for further details). These additional MOFs were
selected at random from the 495,305 entry HYMARC database and therefore represent a more diverse sampling
of the MOF property-space. To this dataset 423,429 additional compounds were added from 7 additional da-
tasets: BJT MOFs,** R-WLLFHS,"* MTV,* CSM-2018-1, CSM-2018-I1,* and CSM-2019-1,* and selected
MOFs from the CSD 2017 dataset.””* Subsequently, the capacities of the MOFs from these additional datasets
were predicted by the ML models without retraining (i.e., no MOFs from these datasets were used for training or
testing, and none of their isotherms were evaluated in advance with GCMC). In total, the dataset employed in
the present study contains H, uptake data for 98,695 MOFs’" and crystallographic property data for 918,734
MOFs.

We note that the present MOF dataset includes approximately 74,000 compounds having open metal sites
(OMS), comprising roughly 8% of the total dataset. As the interatomic potential used in our GCMC calculations
is not tuned to capture the unique aspects of the H,-OMS interaction, it is possible that the calculated capacities
for this class of MOFs will be less accurate. Fig. S1 and Table S3 compares experiments and the present GCMC
calculations of H, capacities across a benchmark set of OMS MOFs discussed by Garcia-Holley et al.” and in our
prior work." These data show that GCMC calculations using the pseudo-Feynman-Hibbs potential are in good
agreement with experimental data for these OMS MOFs. The good agreement between theory and experiments
is a consequence of the low temperature operating conditions used in our study, combined with the relatively low
density of OMS in these MOFs.

Machine learning model

The No Free Lunch Theorem®' implies that the optimal choice of ML algorithm is problem-specific. The differing
performance of the algorithms summarized in Tables 1 and S2 is consistent with this notion. Identifying the best
algorithm for a given dataset requires comparing multiple ML methods, each with optimized hyperparameters.
Unfortunately, few comparisons of ML methods for gas adsorption exist; although dozens of ML algorithms are



available,”77997-10680818592-96 gply RR,”7*% MLR,”” SVM,””*' and NN”” have been examined for predicting H, stor-

age.*637882105 The present study casts a wider net by comparatively assessing 14 ML algorithms (Table 3).77%°7-
106,80,81,85,92-96

The crystallographic properties of MOFs are known to correlate with H, capacities.”*"**'"''® The ML models
developed here exploit these correlations by adopting only crystallographic properties as input features. Moreo-
ver, the number of features was restricted to a small set comprising 7 properties: d, pv, gsa, vsa, vf, Icd, and pld.
These are the same properties employed in our prior work.">''"'"> Figure S2 shows the distribution of crystallo-
graphic properties for the training, test, and unseen datasets. Also, Table S4 summarizes five descriptive (mini-
mum, maximum, mean, median, and % of 0’s) and two distribution statistics (skew and kurtosis) of all crystallo-
graphic features for the training, test, and unseen datasets. (The details regarding these statistics and the defini-
tions of skew and kurtosis can be found in Section SS of the SI). The maxima’s and minima’s of the features in the
training set establish the validity ranges of the ML models developed here.

The goal of the ML models is to predict 4 output properties: UG and UV for each of PS and TPS operating con-
ditions. This was accomplished by developing separate ML models for each of the four targeted capacities. Figure
S3 illustrates the overall work-flow.
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Figure 1. Comparison of ML algorithms for predicting hydrogen uptake in MOFs. Left (a,c) and right (b,d) panels report performance for PS
and TPS conditions, respectively. Top (a,b) and bottom (c,d) panels report performance for usable gravimetric and volumetric capacities, respec-
tively. The abbreviations for the ML methods are defined in Table 3.
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Figure 2. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H capacities
in MOFs. Data is collected at 77 K for a pressure swing between 100 and 5 bar on a test set of 24,674 MOFs. Different colors represent different
categories of MOFs. Top (a-c) and bottom (d-f) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (a,
d): Agreement between ML and GCMC predictions. (b, e): Difference between ML and GCMC as a function of GCMC capacity. (c, f) Distribu-
tion of differences in predictions between ML and GCMC.

The existing dataset of 98,695 MOFs (for which both crystallographic and capacity data are available)”" was ini-
tially split into training and test sets of 74,201 and 24,674 MOFs, respectively, after shuffling the entire dataset.'*
ML algorithms??****1% (Table 3) were implemented using the scikit-learn library.'® Both scaled and unscaled
features were used in training ML models. 10-fold cross-validation was used to optimize the hyperparameters of
each model. The performance of the ML algorithms was assessed by comparing the predicted H, capacities to the
capacity predicted by GCMC for the MOFs in the test set. The metrics used for the performance assessment of
ML models were the coefficient of determination (R?), average unsigned error (AUE), root-mean-squared error
(RMSE), median absolute error (MAE), mean absolute percentage error (MAPE), and the Kendall rank correla-
tion coefficient (7). Additional details regarding these calculations can be found in Section S7 of the SI.

Dataset size

An obstacle to wider adoption of ML in materials science is the availability of sufficient quantities of high-quality
training data.'"*''* Unfortunately, it is not yet clear how much data is needed to construct a useful ML model for a
given system. Fernandez et al.”* found that a reasonable balance between accuracy (R* ~0.85 to 0.93) and compu-
tational expense for predicting methane storage in MOFs was achieved for a training set containing data on 10,000
MOFs with 3 features. In contrast, Fanourgakis et al. ''* showed that a much smaller training set of ~1000 MOFs
was sufficient to predict methane uptake when using six crystallographic features and four fictitious features. The
different training set sizes required in these prior studies arise from the differing numbers and types of features
used.

The present study explores this issue further by systematically examining the effect of training set size, and the
training set to test set ratio, on ML accuracy. For each of the four targeted capacity outputs, 100 independent ML
models were developed by varying the size of the training set between 100 and 74,000 MOFs (see Table SS for a
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list of the training set sizes). The four best-performing ERT ML algorithms identified earlier were used with 10-
fold cross-validation. The resulting models were assessed using a common test set of 24,674 MOFs.

Feature importance /selection

The well-known Chahine rule proposes a linear correlation between gravimetric surface area and excess gravimet-
ric H, capacity in adsorbents."'®""” Nevertheless, the Chahine rule overpredicts H, capacities for MOFs with high
surface areas,''” and has not been extended to predict usable capacities.">® Hence, a model for predicting H, uptake
that is more general than the Chahine rule, yet requires limited input data, would be very helpful. In principle, ML
could be used to generate such a predictive model if the features that are the most important for predicting H,
uptake could be identified. Along these lines, Pardakhti et al. reported improved accuracy in predicting CH,4 ad-
sorption when using a combination of (7) crystallographic and (19) chemical features.” Recently, Moosavi et al.
explored feature importance in predicting the synthesis of MOFs."'®

The present study determines the minimum number and optimal combination of crystallographic features neces-
sary to achieve a specified accuracy in predicting H, uptake. The relative importance of the input features was

assessed for all possible univariate and multivariate feature combinations using ERT ML models. The number of
Ntot!

Nsup!(Neot—Tsup)!

number of available features, and 1 <= ny, <=7 is the number of features used as input to a given ML model. A

total of 127 feature combinations are possible. ML models were developed for each of these feature combinations
for each of the 4 output capacities, resulting in a total of 508 distinct ML models. All models were trained using a
dataset of 74,021 MOFs and tested on a common set of 24,674 MOFs. 10-fold cross-validation was used for tuning
and validating the models using only the training set. Univariate feature importance was further assessed using (i.)
Pearson’s correlation coefficient (r),'"'*! (i), Breiman and Friedman’s tree-based algorithm as implemented in
Scikit-learn,””'% and (iii) the permutation importance method as implemented in rfpimp package.’* Additional
details regarding these methods can be found in Section 13 of the SL

multivariate feature combinations, M, is given by: M (¢, Ngyp) =

where ny: = 7 is the total

Results and Discussion

Evaluating ML algorithms

Tables S6-S9 illustrate the effect of several feature scaling methods on the performance of the ML algorithms
examined here. Only the SVM family of models (SVM/L-K, SVM/RBF-K, and Nu-SVM/RBF-K)779298100.101,106
were impacted by the choice of scaling method.

Figure 1 compares the accuracy of the ML algorithms for predicting hydrogen uptake in MOFs. R* and AUE were
used as performance metrics. SVM variants were trained using min-max feature scaling; un-scaled features were

Table 4. Performance of the Extremely Randomized Trees ML algorithm in predicting UG and UV H. capacities of MOFs under PS
and TPS conditions. R’, AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-
squared error, and median absolute error, respectively.

H, capacity type R’ (capazltijunits) (capaﬁ:lgg inits) Stk (capaﬁnits)
UG at PS (wt. %) 0.997 0.14 0.18 0.961 0.10
UVatPS (g-H2 L>1) 0.984 0.97 1.40 0.922 0.69
UG at TPS (wt. %) 0.997 0.16 0.23 0.966 0.10
UVat TPS (g-H2 L>1) 0.967 1.32 1.92 0.819 091

used in training the remaining models. The performance of the algorithms as measured by 4 additional metrics —
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root mean square error (RMSE), explained variance (EV), MAE (median absolute error), and Kendall T - is re-
ported in Tables S6-9.

Opverall, these data indicate that the tree-based ensemble methods are superior to the other methods examined.
In particular, the Extremely Randomized Trees (ERT)7"%'% algorithm exhibited the best performance overall.
Boosted Decision Trees (BDT),”7>#41041% Random Forest (RF),%'% and Bagging algorithm vari-
ants”7?5106123124 (vyith tree-based base estimators) are nearly as accurate. The R values for ERT predictions exceed
0.997 for gravimetric capacities, which are equivalent to errors of ~0.14 wt.%. Volumetrically, the accuracy of the
ERT algorithm is slightly worse than its gravimetric performance: R* = 0.967-0.984, equivalent to errors of ~1.1
g-H, L on average. In general, the worst-performing algorithms were linear regression, ridge regression, and sup-
port vector machine with linear kernel. For these algorithms R?* varies between 0.913 and 0.992 depending on the
conditions (i.e., gravimetric/volumetric and PS/ TPS). As expected, the linear nature of these algorithms fails to
fully capture the nonlinear dependence of output capacities on the multiple input features.

Figure 1 also shows that all the algorithms tested yield more accurate predictions of UG capacities compared to
those for UV. Likewise, all algorithms more accurately predict usable capacities under PS conditions than under
TPS conditions. This reflects the fact that the functional relationships between output capacities (UG/UV) and
input features under PS and TPS conditions are likely different, as was observed in previously reported struc-
ture(feature)-property(capacity) relationships."®'** Table 4 summarizes the performance of the ERT algorithm
in further detail. A comparison of Tables 1 and 4 indicates that the accuracy of the present ML models surpass
previously-reported models for H, uptake. Furthermore, the present models also appear to be an improvement
over earlier models that aim to predict the adsorption capacities of MOFs for any gas species, Table S2. This
improved performance can be attributed to the exploration and optimization of multiple ML algorithms, use of
an appropriate feature set, and the relatively large size of the present training set.

Figure 2 illustrates the degree of agreement between ERT ML predictions and GCMC calculations of usable H,
capacities under PS conditions as a function of MOF source database. (Fig. S4 shows similar data for TPS condi-
tions; see also Table 4.) As mentioned above, the present ML models more accurately predict UG capacities than

Ratio of training to test set
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Figure 3. Performance of Extremely Randomized Trees ML models for predicting usable (a) gravimetric and (b) volumetric H: capacity as a
function of training set size and the ratio of training to test set size. 100 different training sets ranging in size between 100 and 74,021 MOFs were
examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using R* (left axis, black) and the average unsigned
error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law fit to the data.
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UV capacities. The largest differences between ML and GCMC capacities (Fig. 2¢,f & Fig. S4c,f) primarily occur
for the real MOF dataset. In principle, these differences may arise either from ML overfitting or from inaccurate
GCMC predictions caused by non-ideal/incomplete MOF crystal structure data (i.e., missing atoms, disorder,
etc.) as mentioned in prior studies."*'¢-'2 ERT algorithms are fairly robust against overfitting.** To examine the
possibility for overfitting, test set errors were compared with training set errors as shown in Fig. S5 and Table 4.
These data suggest that the outliers are not a consequence of over fitting; hence, inaccuracies in the crystal struc-
ture data is proposed as the most likely source of this disagreement. 35126712

Effect of training set size

Figure 3 illustrates the impact of training set size on the accuracy of the ERT ML models as quantified using R?
and AUE. (Table SS summarizes the dataset sizes used in these plots.) For training sets containing more than 5000
MOFs R? and AUE vary slowly and in a monotonic fashion, with AUE decreasing and R increasing. The accuracy
of the models is more sensitive to the size of the training set for smaller training sets containing roughly 5,000 or
fewer MOFs. Figure S6 highlights the variation in performance for these smaller training sets.

The trends AUE as a function of training set size can be fit to a power-law expression of the form AUE(m) = amP
+ Y where m represents the size of the training set and 3 is the power law exponent. Fitting this model to the data
shown in Fig. 3 reveals that the AUE for UG converges faster with training set size (§ = -0.37 and -0.43) than it

does for UV (f =-0.16 and -0.23). A full tabulation of the power-law parameters is given in Table S10. Based on
these power-law expressions, one can determine the necessary size of the training set to achieve a desired level of
accuracy. For example, assuming pressure swing operation, to achieve an AUE of approximately 0.25 wt.% and 1.5
g-H, L requires training set sizes (for UG and UV) of less than 300 MOFs randomly selected from the diverse
datasets used here.
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Figure 4. Importance of seven features in predicting usable H» storage capacities of MOFs. Feature importance was determined by developing
distinct ERT models for each individual feature. The accuracy of the resulting models was assessed using R* (left axis; black data set) and AUE
(right axis; red data set). Models were trained on a dataset of 74,201 MOFs and tested on a set of 24,674 MOFs. pv = pore volume; d = density; vf
= void fraction; gsa = gravimetric surface area; pld = pore limiting diameter; lcd = limiting cavity diameter; vsa = volumetric surface area.

Univariate feature importance

Figure 4 illustrates the relative importance of the seven crystallographic features in predicting usable hydrogen
uptake in MOFs. Feature importance was determined by developing ERT models for each single feature individ-
ually. Additional details for these models are provided in the Supporting Information. Based on these models, it
is evident that pore volume (pv) and void fraction (vf) are the dominant features in predicting H, capacity; these
two properties appear as the first- or second-most important single features regardless of operating condition or
capacity type. The importance of these features can be rationalized by two factors. First, based on the empirical
Chahine rule, the pore volume of a MOF correlates with its excess uptake.''® Second, pore volume and void frac-
tion are related (since pv = vf d!) - MOFs with larger pv have larger vf, and vice versa.!

Conversely, the largest cavity diameter (lcd) and volumetric surface area (vsa) are the single features whose ML
models yield the lowest accuracy. The relative importance of the individual features for predicting UG capacities
is: pv > d > vf > gsa > pld > lcd > vsa. This ordering is the same for PS and TPS conditions. In contrast, the im-
portance ordering for UV capacities differs based on the operating condition. Nevertheless, vf and pv remain the
two most important single features for both UV conditions, in that order (Fig. 4).

13



Q 2
a = Db 5
0.998 — . . ; . . —028 ¥ 0.998 — . , ; . —028 &
e ﬁ .. \;’ N E
o e b N | .._,_.____.___». b
0.996 - Y to2a © 0.996 L0.24 o
) % 8 .. . g
= . . Gravimetric — TPS
\ @ Gravimetric — PS S e 3
R2 0.9941 L0200 o R2 09941 S N F020 o
/o = - N =
S~ - - -—
/ e g ' TO-e-- o GEJ
0.992 . o6 -3 0.992 - ro16 -3
( Ne----e----0 o o
. o (o))
0.990 -+ r T . T r —+0.12 E 0.990 +— v T r v . —+0.12 E
D) Qob ¥ 59\6 bQ\b 59\6 -} ¢ @ ¢ ER )
N ROSEEECANIENG < ¥ P & @ RN <
> P : SRR
K Q.9 > N 3
SRR & P &
P & & Q¥ ¥ RS
RN s S AR
S IS
>
— —
1 '_|
C = d T
- . ‘ . 2.2 22
0.98- e T8 i 098] ® ]
.- o NS
e 20 7 r2.0
Ut | > >
. = .. Y N =
0.96 1 ER) 0.96 Y P ® l1s 8
. Q B Q
Volumetric — PS L1s © 2 R L1s @
R2 o941 et R2 o4l .- 8]
o. () b (@]
s F14 & K o ---o---_¢ |14 =
- © ‘ ®
0.92+ ... F2  E 0924 ./ Volumetric — TPS F12 IS
e S ; 2
S i = I 5
° o--_¢ (10 g . 1.0 e
0.90 +— , . ; . . ; Z 0.90 ; Z
$ c«QA S & QR w I A G G )
NI R S SN -] > @ & & & 2
o K Q
K R RN < > F <
UK SARR S N S &8 s
& & & S 2 2
Y e""A & @c? q,ﬁa
o §
b~

Figure 5. Accuracy of Extremely Randomized Trees (ERT) ML models as determined by R? and AUE as a function of the number and combination
of input features. Each data point represents the most accurate feature combination for a given number of features. ERT models were trained on a
dataset of 74,201 MOFs. R and AUE were calculated using a test of 24,674 MOFs. Feature abbreviations are defined in Fig. 4.

Despite their limited input, the single-feature ML models illustrated in Fig. 4 achieve high accuracy. For example,
any of the three independent models for UG-PS based only on pv, d, or vf can predict capacities with R* > 0.95
and with AUE of less than 0.5 wt.%. The accuracy and simplicity of the univariate ML models suggest that they
can be used to quickly screen new MOFs for their utility in hydrogen storage. To that end, optimized single-fea-
ture ML models for the four categories of usable capacities considered here have been made available for use on
the web with an interactive web form or with a python AP1.*® Furthermore, the ML models can be downloaded
via figshare.** These models take as input either pv (for UG predictions) or vf (for UV) of a given MOF. These

input data can be quickly calculated from a MOF’s crystal structure using modern structure analysis codes.”>''"'3!-

Table 5. The best combinations of features for predicting UG and UV H. storage capacities at PS and TPS conditions.

Condition Feature Combination = No. features R? AUE RMSE Kendall t
UG at PS gsa, vf, pv, led, pld S 0.997 0.14 wt. % 0.19 wt. % 0.959
UG at TPS d, vsa, pv, Icd, pld S 0.996 0.18 wt. % 0.25 wt. % 0.959
UV at PS vsa, v, pv, lcd, pld S 0.983 1.01gH, L" 145g-H,. L" 0.920
UV at TPS vsa, v, pv, lcd, pld S 0.961 141gH, L' 2.10g-H, L' 0.814
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3* As shown in Fig. 4, these models can predict UG with an average error of less than 0.4 wt.%, and UV with errors
less than2.2 g-H, L.

Figure S7 compares the single feature importance assessments based on ERT ML models (as reported in Fig. 4)
with three popular methods for determining feature importance: Pearson’s correlation coefficient (r),'"*"'*!
Breiman and Friedman’s tree-based algorithm as implemented in Scikit-learn,”>'% and the permutation im-
portance method as implemented in rfpimp package.'”” It is clear that the feature importance methods do not
reproduce in detail the rank-ordering of feature importance that is suggested by our ERT ML models. Neverthe-
less, good agreement is evident more broadly. For example, in the case of UG (Fig. S8a,c), the three feature im-
portance methods suggest that in aggregate pv is the most important feature, while vsa is the least, in agreement
with the ERT models (Fig. 4a,b). Similarly, for UV, the importance methods suggest that vf and lcd are among
the most and least important features, respectively. This is the same trend found in the univariate ERT models

(Fig. 4¢,d).

Multivariate feature importance

Figure § illustrates how the accuracy of the ML models varies with the number and combination of features. As-
suming 7 features, 2’-1 = 127 possible combinations exist. For a given number of features, Fig. S plots the combi-
nation of features resulting in the highest accuracy model. The last section of Appendix A summarizes the perfor-
mance for all 508 possible feature combinations and capacity/operating condition types.) As expected, Fig. 5
shows that ML accuracy generally increases as the number of input features increases. As previously discussed,
when limited to a single feature, vf yields the best accuracy for predicting UV, while pv is the best choice for UG.
When the feature set is extended to 2 features, the combination of d and pvis the optimal choice among the (Z) =
21 possible pairs regardless of the capacity (UG vs UV) or operating condition (PS vs TPS). For larger numbers
of features, the optimal feature combination depends upon the operating condition and the capacity type. Based
on the AUE, whose value tends to plateau as more features are added, highly accurate ML models can be generated
using only S input features (Table S). These data lend further support to the notion that the accuracy of a given
ML model depends on both the number and identity of the input features. As a slightly more accurate alternative
to the univariate web models described above, a subset of the present multivariate ML models that use 4, S, and 7
input features are also available on the web using an interactive web form and via a python AP1.** The ML models
can also be downloaded via figshare.'*

H., uptake in unseen MOFs

Figure 6 illustrates the H, storage capacities of 820,039 MOFs as predicted by the 7-feature ERT ML models de-
veloped here. (This dataset is publicly accessible via HYMARC data hub.”") These MOFs are referred to as ‘un-
seen, in that they have not been included in the training or test sets used to develop the models. Figures 6a,b show
UV capacities as functions of UG capacities under PS and TPS conditions, respectively. Both plots exhibit a rapid
increase in UV at low values of UG, and reach a maximum in UV at UG values of approximately 9 wt.%. Beyond
the maximum, UV decreases relatively slowly with increasing UG. These trends are consistent with our earlier
findings derived from GCMC calculations on smaller datasets.">°

In the case of PS operation, the maximum UV across the MOFs in the dataset is 37.4 g-H, L'; for TPS operation
the maximum UV is 48.5 g-H, L. In the case of UG, the maximum value predicted is 39 wt.% for PS operation
and 42 wt.% for TPS. These values can be placed in context by comparing against the DOE hydrogen storage
targets, which stipulate system-level hydrogen densities of 5.5 wt% and 40 g-H, L' by 2030 and 6.5 wt.%/50 g-H,
L'longer-term (‘Ultimate target’).® Given that the tank and balance-of-plant for the storage system have non-zero
mass and volume, the MOFs examined here cannot meet the Ultimate target for UV, regardless of operating con-
dition."” More optimism exists, however, for meeting the gravimetric targets given the high UG exhibited by these
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systems on a MOF-only basis. Of course, an additional challenge is to identify MOFs that excel both gravimetri-

cally and volumetrically.">%3"13

It is also helpful to compare the performance predictions in Figs. 6a,b with that of state-of-the-art materials. In the
case of PS operation, our prior study demonstrated that PCN-610 (NU-100) exhibits a hydrogen capacity of 10.1
wt.% & 35.5 g-H, L, which to our knowledge is the best combination of gravimetric and volumetric capacities
reported for any MOF under these conditions. The data in Figure 6a reveals that 16,345 MOFs can, in principle,
exceed this capacity on both a UG and UV basis. In the case of TPS operation (Figure 6b), MOF-S remains the
benchmark, which a measured capacity of 7.8 wt.% & 51.9 g-H, L''.> Figure 8c shows that only 21 MOFs out-
perform MOF-S under these conditions.

Regarding the accuracy of the present ML predictions, Table 4 shows that the AUE of these models are on the
order of 0.15 wt.% and 1.3 g-H, L. Although these errors are small, a more rigorous validation of the ML can be
achieved with GCMC calculations. Thus, GCMC calculations were performed on a subset of MOFs that ML pre-
dicted to exhibit high UV and UG capacities. These MOFs fall within the rectangular regions shown in Figs. 6a,b,
and exhibit capacities that meet or exceed 36 g-H, L' & 7.5 wt.% for PS conditions and 48 g-H, L' & 7.5 wt.%
under TPS conditions. In total, 21,700 compounds were re-examined with GCMC based on their ML-predicted
PS capacities, and another 7,901 were re-examined for TPS.

a . . . b : - - .

e ' = MOF-5 >7.5wWt.% & 48 g-H, L
L 40 ML - PS | ) 5047 2 g i
T o> 7.5 wt.% & 36 g-Hy L :5[,
2 e S 2 404 ]
> 2
g 304 PCN-610/NU-100 b EE
©
g 20 ] 2
5 B i J
£ g 2
3 =]
g 101 B Real MOFs | 5]
o a ﬁth:}: hypolhe}\inc(a)\F MOFs o 10 B
- lorthwestern S
g B Univ. Ottawa MOFs § ML - TPS
g B Univ. BJT MOFs -}
O T T T T 0 T T T T T
0 10 20 30 40 0 10 20 30 40
Usable gravimetric capacity (wt. %) Usable gravimetric capacity (wt. %)

56 T T T T

L 401 ML vs GCMC - PS 1 < 5] MOFs5 ]
T / T °
) 2
> 3] | = 52 .
[&]
53 S 50 .
8 8
S 36 . o
2 £ 484 B
3 9]

1S
E 34 4 g 3 464 R
g g
2 B ML predicted % 44+
o) -
B 321 B - GCMC calculated l B ML vs GCMC - TPS
B ; ; : ; ; . o 42 , : . ;

6 8 10 12 14 16 6 8 10 12 14 16
Usable gravimetric capacity (wt. %) Usable gravimetric capacity (wt. %)

Figure 6. (a,b) Machine learning predictions of usable hydrogen capacities of 820,093 MOFs. Colors indicate the originating database for a given
MOF. (c,d) Validation of ML-predicted capacities for the highest capacity MOFs identified by ML (shown in the rectangular regions in ¢,d) using
GCMC simulations. For comparison, the capacities of PCN-610/NU-100 (PS: 10.1 wt.%, 35.5 g-H. L) and MOEF-S (TPS: 7.8 wt.%, 51.9 g-H, L-
1) are shown.
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Figure 6¢ compares ML and GCMC predictions for usable capacities for 21,700 high-capacity MOFs under PS
conditions. The strong overlap in the two datasets further highlights the accuracy of the ML models. A total of
8,187 MOFs were predicted by GCMC to outperform PCN-610/NU-100 under these conditions. A summary of
the 10 highest-capacity MOFs, sorted based on their GCMC capacities, is provided in Table 6. (A more extensive
listing is provided in Table S11.) The highest capacity MOFs are all hypothetical compounds: S originate from
the ToBaCCo database,” two are from the Univ. of Ottawa database,*” and the remainder are from the Northwest-
ern*® database. These MOFs all exhibit high surface areas (average =5746, range = 4346 — 7835 m? g!) and large
void fractions of 0.89, on average. The range of these property values are consistent with those reported in an
earlier study,"**'*” and suggest that maximizing the surface area is an important design guideline for PS operation.
The highest capacity MOF, mof 7642,* is predicted to exhibit capacities of 11.1 wt. % and 40.5 g-H, L™, surpas-
sing that of PCN-610/NU-100, the record-holder under PS conditions. The crystal structure of mof 7642 is
shown in Fig. 7a.

A search in the CCDC"* was performed to identify MOFs that have been synthesized that are similar to the high-
capacity compounds identified here. The existence of similar MOFs may suggest synthetic procedures that could
be adapted to the present systems. The top S MOFs under PS conditions contain relatively long tritopic linkers.
In the case of mof 7642, this search identified the interpenetrated MOF RANCEQ'* as having a similarly index
of 0.82. Interpenetration is fairly common in MOFs (such as mof 7642) with longer linkers, and is generally un-
desirable for achieving high uptake. Nevertheless, several examples of successful synthesis of MOFs with long,
multi-topic linkers that do not undergo interpenetration have been reported. These include MOF-180 and MOF-
200,'* the PCN-6X series,'* and NOTT-112."* The next 4 PS candidates in Table 6 exhibit pillared Zn paddle-
wheel clusters with long ditopic linkers. Karagiaridi et al.'"® demonstrated the feasibility of synthesizing pillared
paddlewheel MOFs with long linkers; the SALEM-X series are examples.'”  Finally,
stt. m3 oS 020 f0 nbo.sym.l.out is based on a Zn paddlewheel cluster and a ditopic linker. HOFSUS is an ex-
ample of such a MOF.'#

Figure 6d provides a similar comparison between ML predictions and GCMC calculations for MOFs expected to
exhibit high capacities under TPS conditions. Under these conditions only 95 MOFs were predicted by GCMC

Table 6. Highest capacity MOFs, as identified by ML and verified with GCMC, under pressure swing and temperature + pressure
swing conditions. Here NW and UO refer to the Northwestern*® and University of Ottawa databases.”

@ Vol. Pore Largest  Pore Usable grav. Usable vol.
Name Source ?emi?)' surface area surface area p Void i jume dcavity (llimiting capacity (wt. %) capacity (g-H2 L")
cm’ 2 2 raction 3 iameter diameter
8 (m'g")  (m om?) (em'g") 'k () GCMC ML GeMC ML
Pressure swing
mof_7642 ToBaCCo 0.30 5561 1695 0.89 2.93 12.8 11.8 11.1 10.3 40.5 37.4
mof_7690 ToBaCCo 0.30 5718 1706 0.89 2.98 12.8 12.0 11.3 10.4 40.3 37.3
mof_7594 ToBaCCo 0.40 5070 2031 0.86 2.15 11.2 9.7 8.6 7.9 39.9 37.0
mof_7210 ToBaCCo 0.29 5936 1730 0.89 3.04 13.4 11.7 114 10.5 39.8 37.1
mof_7738 ToBaCCo 0.25 6054 1502 0.90 3.64 14.5 13.5 13.0 12.0 39.7 37.0
hypotheticaMOF_5045702_i_1_j_24 k_20_m_2 NW 031 5926 1820 0.88 2.87 16.0 11.0 109 101 397 372
str_m3_019_o019_f0_nbo.sym.1.out uo 0.31 5073 1583 0.90 2.88 17.7 12.9 10.8 10.1 39.7 37.1
hypotheticaMOF_5037315_i_1_j_ 20 _k_12_m_1 NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 397 370
hypotheticaMOF_5037467_i_1_j_20_k_12_m_8 NW 031 5860 1800 0.88 2.85 16.0 11.0 109 100 397 370
str_m3_05_020_f0_nbo.sym.1l.out Uo 0.39 4772 1882 0.87 2.22 14.1 9.6 8.7 8.1 39.7 37.2
Temperature + pressure SWiIlg

str_ml_ol_oll_f0_pcu.sym.102.out uo 0.45 4352 1974 0.84 1.84 12.9 10.1 10.4 9.7 53.1 48.1
str_ml_ol_oll_f0_pcu.sym.117.out uo 0.47 4162 1977 0.83 1.74 12.8 9.9 9.9 9.0 52.8 48.0
str_ml_ol_oll_f0_pcu.sym.121.out uo 0.47 4263 2006 0.83 1.76 12.1 10.2 10.0 9.4 52.7 48.1
str_ml_ol_oll_f0_pcu.sym.13.out uo 0.46 4326 2008 0.83 1.79 12.7 9.9 10.1 9.3 52.6 48.0
str_ml_ol_oll_f0_pcu.sym.159.out uo 0.58 3703 2138 0.80 1.38 10.4 8.6 8.3 7.6 52.6 48.5
str_ml_ol_oll_f0_pcu.sym.200.out uo 0.45 4359 1978 0.84 1.84 12.9 10.1 10.3 9.6 52.6 48.1
str_ml_ol_oll_f0_pcu.sym.212.out uo 0.60 3417 2038 0.83 1.39 12.0 10.1 8.1 7.5 52.8 48.1
str_ml_ol_oll_f0_pcu.sym.51.out uo 0.46 4330 2007 0.83 1.79 11.9 9.9 10.1 9.3 52.8 48.1
str_ml_ol_oll_f0_pcu.sym.71.out uo 0.45 4436 1980 0.84 1.87 13.0 10.9 10.4 9.7 52.8 48.1
str_ml_ol_oll_f0_pcu.sym.89.out Uo 0.58 3507 2043 0.83 1.42 12.4 9.8 8.2 7.7 52.5 48.1
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Figure 7. Crystallographic images of the highest-capacity MOFs under (a) pressure swing and (b) temperature swing conditions. These MOFs
originate from the ToBaCCo*® and University of Ottawa® databases, respectively.

to outperform MOEF-5. A summary of the 10 highest-capacity MOFs, sorted by their GCMC capacities, is pro-
vided in Table 6. (See Table S12 for a more extensive tabulation.) As found for PS operation, all of the top per-
forming candidates are hypothetical compounds. One difference with the PS case is that all of these MOFs origi-
nate from the Univ. of Ottawa database.”” Furthermore, none of the highest capacity MOFs identified for PS op-
eration appear as top candidates for TPS. Comparing the highest-capacity MOFs for both operating conditions, it
can be seen that the high-capacity TPS MOFs systematically exhibit lower surface areas (avg. = 4073 m* g'),
smaller void fractions (avg. = 0.83), and higher densities. Hence, the categories of MOFs that maximize uptake
under PS and TPS conditions exhibit distinct properties. These differences suggest that maximizing the surface
area — which, as discussed above, is desirable for maximizing PS capacity — is not advantageous for TPS operation.
This behavior can be explained by trends in total capacities,® which the TPS capacities reported here approximate.
More specifically, it is known that total volumetric capacities are maximized for intermediate values of the surface
area; for larger surface areas the volumetric capacity decreases.

Returning to the list of promising MOFs for TPS operation, Table 6 reports that the highest-capacity MOF,
str ml_ol oll fO pcu.sym.102.out, has a GCMC-predicted capacity of 10.4 wt.% and 53.1 g-H, L. This ca-
pacity surpasses that of MOF-S, which to our knowledge holds the capacity record under these conditions. The
crystal structure of this MOF is shown in Fig. 7b.

The top 10 MOFs under TPS conditions contain the same Zn metal cluster and terephthalic acid linkers, where
the linkers have been modified with varying functional groups. The slight differences in the capacities of these
MOFs can be traced to differences in the functional groups. A similarity search based on
sttt m1 ol oll fO pcusym.l17.out identified 40 similar MOFs. Approximately 30 of these (for example,
HIFTOG, MIBQAR, UNIGEE, VUSJUP, and ZELROZ) contain Zn metal clusters and linkers based on variants
of terephthalic acid.

Figures S8-S9 and Table S13 quantify the differences between ML and GCMC predictions on the subset of high-
capacity MOFs shown in Figs. 6¢,d. For PS operation, the AUE of ML relative to GCMC is 0.24 wt.% and 0.66 g-
H, L', while for TPS the AUE is 0.24 wt.% and 1.28 g-H, L. Both sets of errors are comparable to the errors
reported in Table 4 for the original test set of MOFs. Figures S8(c, f) and S9(c, f) plot the frequency distribution
of the differences between GCMC and ML. These distribution plots suggest that the largest differences occur for
predictions involving real MOFs and for hypothetical MOFs extracted from databases other than those from
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Northwestern,* University of Ottawa,”” and BJT.%* (These MOFs are referred to as “other hypothetical MOFs” in
Figure 6). These MOFs, along with the real compounds, exhibit higher structural diversity than those contained
in the other databases. For example, the diversity of the topologies used in the ToBaCCo* and Zr-MOFs* data-
bases and in the linkers used in MTV-MOF** database are larger than what is found in the databases from North-
western,* University of Ottawa,*” and BJT.%

Limitations of this Study

As previously described, some of the high-capacity MOFs identified here may prove difficult to synthesize. Alt-
hough this limitation applies primarily to the hypothetical MOFs, in some cases real MOFs are also known to
undergo framework collapse during activation, which would reduce capacity."? Nevertheless, future improve-
ments to synthesis techniques may overcome these limitations — what is difficult to make today may be possible
in the future. Secondly, our models do not distinguish between realistic MOFs having non-defective crystal struc-
tures and those for which the structures are defective/unrealistic. Unrealistic structures can result from incomplete
or imperfect virtual solvent removal and the presence of partial occupancies or symmetry disorder in the crystal
structure.’ Consequently, a defective/unrealistic MOF could be erroneously predicted to be a promising candi-
date. Follow-up calculations using GCMC and visual inspection of the crystal structure are recommended for all
promising candidates identified by ML. Finally, the ML models developed here are non-interpretable, ‘black-box’
models. Although these models are demonstrated to be highly accurate, additional effort is required to assess the
relative importance of their input data. (The approach demonstrated here for evaluating feature importance in-
volved the development of multiple models with varying numbers and combinations of features.) Alternatively,
interpretable white-box ML models could be developed to provide more insight into feature importance. How-
ever, our experience suggests that white-box models generate less accurate predictions.

Public accessibility of ML models and datasets
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General public can use all our ML models free of cost for the prediction of H, storage capacities of an arbitrary
MOF via the HyYMARC website.! An user can provide input features required by ML models either via an web
form (Figure 8a)" or a Python API (Figure 8b). The detailed user instructions are also provided in the HYMARC
website."! In addition, 16 downloadable ML models with user instructions were made publicly available via
figshare,” an online open access repository. All ML predicted usable gravimetric and volumetric H, storage capac-
ities of 820K MOFs under PS (Fig. 8c) and TPS (Fig. 8d) conditions were made public via HyMARC datahub,’
including their 7 crystallographic features.

Summary — Materials Discovery
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Figure 8. Open-access ML models and datasets for H, storage in MOFs publicly accessible via the HyMARC website. (a) Interactive web form.
(b) Python API. Datasets containing usable gravimetric and volumetric capacities of 820K MOFs under (c) PS and (d) TPS conditions, includ-
ing 7 crystallographic properties.
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The H, storage capacities of nearly a million MOFs have been predicted via machine learning. The predictions
span a diverse collection of MOFs sourced from 19 databases and reveal performance under two operating con-
ditions: pressure swing and temperature + pressure swing. More than a dozen ML algorithms were benchmarked,
with the extremely randomized trees method found to be the most accurate. The resulting ML models are acces-
sible on the web at the HyMARC Data Hub.* These models allow for accurate, rapid screening of the hydrogen
storage properties of new MOFs using minimal structural data as input; only a single feature is needed for the
simplest models.

The accuracy of the ML models was characterized as a function of training set size and the number/combination
of input features. Regarding the dependence on the training set, the accuracy of the models can be well-described
using a simple power-law function of the training set size. The dependence on the number and combination of
input features was determined by evaluating 508 independent ML models generated from all possible combina-
tions of the seven features. The single most important features for predicting H, uptake are pore volume (for
gravimetric capacity) and void fraction (for volumetric capacity).

Using these models, 8,282 MOFs are identified that have the potential to exceed the capacities of state-of-the-art
materials under usable conditions. The identified MOFs are predominantly hypothetical compounds, which (for
pressure-swing operation) exhibit low densities (<0.31 g cm™) in combination with high surface areas (> 5,300
m? g'), void fractions (~0.90), and pore volumes (>3.3 cm® g"). These MOFs are suggested as targets for experi-
mental synthesis.

PART 2: CRYSTAL ENGINEERING

Introduction

Storage of sufficient quantities of fuel on automobiles presents one of the greatest challenges to realizing a hydro-
gen economy. A number of technologies have been pursued for improving energy density of hydrogen; these are
divided into physical-based (cold or cryo- compressed hydrogen storage) and materials-based (chemical hydrogen
storage materials and metal hydrides, sorbents) approaches.”*"'* Storage in metal-organic framework (MOF)
sorbents via adsorption presents one of the most promising approaches due to fast charge/discharge kinetics, fac-
ile reversibility, and high gravimetric capacities.'* However, high volumetric densities are uncommon in MOFs,
and these densities can be impacted by multiple factors such as MOF structure, the nature of the interaction of H,
with the MOF, and the packing of the MOF material."** The issue of materials packing, although acknowledged as
an important factor, has not been widely examined.

Calculations of volumetric performance often assume (unrealistic) single crystal packing densities, and it must be
recognized that this represents an upper limit to performance. Analysis by the Hydrogen Storage Engineering Cen-
ter of Excellence (HSECoE) demonstrated that inefficient material packing can result in a >60 % volumetric den-
sity reduction compared to the single crystal.'*” In other words, volumetric performance of the MOF in a real
system will be profoundly impacted by the discrepancy between MOF material packing density and crystallo-
graphic density. Consequently, improvements to the intrinsic capacity of the adsorbent, which have been the focus
of materials research for more than a decade, can be ‘undone’ by poor packing of the media in the storage system.
Therefore, MOF packing efficiency is an important parameter and plays a critical role in improving volumetric
hydrogen storage density in real systems.
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The packing of uniform spheres has an upper limit of 74% packing efficiency.”' Achieving this threshold requires
an ordered arrangement in space and it has recently been shown that random packing of spheres cannot exceed
63% packing efficiency.”' For other particle shapes the results differ: randomly jammed tetrahedral dice'* exhibit
packing efficiencies of 76% compared to 100% packing efficiency for the regularly arranged platonic solids. How-
ever, there exists no theoretical framework for predicting the minimum void space that is practically achievable for
polydisperse shapes characteristic of MOFs. Thus, packing density studies on real MOF samples whose crystals
exhibit different shapes and sizes is currently best pathway to understand packing efficiency. Unfortunately, strat-
egies to engineer crystal shape/size properties and pack MOFs with low void fraction have not been widely ex-
plored. Here, MOFs with targeted crystal shapes (cubic, cuboctahedral, octahedral, and spherical) and sizes are
synthesized. Their packing density and hydrogen uptake are characterized and compared with BASF-produced
(hereafter “commercial”) material. The optimization of crystal size and engineering of crystal morphology for
MOE-S§ is demonstrated to dramatically improve volumetric hydrogen storage performance, both in terms of pack-
ing density (up to 100% improvement) and compacted density (up to 33%) with respect to what can be achieved
with commercial MOF-S powders.

Experimental section

Materials

Terephthalic acid (H,BDC, 98.0%), 1,3,5-tris(4-carboxyphenyl)benzene (H;BTB, >98%), oxalic acid (>99.0%),
malonic acid (99%), succinic acid (>99.0%), glutaric acid (99%), adipic acid (99.5%), and suberic acid (98%)
were purchased from Sigma Aldrich. 1,3,5-Benzenetricarboxylic acid (>98%) N,N-dimethylformamide (DMF,
ACS grade), methylene chloride (DCM, HPLC grade, 99.9%), and zinc nitrate hexahydrate (Zn(NOs)2-6H,0,
ACS grade) were purchased from Fisher Scientific. N,N-diethylformamide (DEF, 99.0%) was purchased from
Acros Organics. [1,1'-biphenyl]-3,4',5-tricarboxylic acid,'s* 1 2,4,6-tris(4-carboxyphenyl)aniline (NH,-H;BTB,
HiL),'* 5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid (H,L),"** and §'-(4-car-
boxyphenyl)-[1,1':3',1"-terphenyl]-3,4",5-tricarboxylic acid (H4L)'** were synthesized according to the literature
procedure.

Results and discussion

To assess the influence of crystal size and shape on packing efficiency, the benchmark compound MOEF-5 was
selected as a model."* MOF-5 shows one of the highest deliverable hydrogen volumetric capacities among all
MOFs based on its single crystal density' and, based on techno-economic analysis, can meet adsorbent cost tar-
gets.’” Nevertheless, the poor packing density of MOF-S limits its volumetric hydrogen capacity in practice."'>*
In the present study, cubic MOF-S crystals with four different sizes, varying from hundreds of micrometers to
millimeter scale, are obtained by modulating the metal:ligand (M:L) molar ratio as well as the reactant concentra-
tion. In addition, new methods for synthesizing MOF-S crystals with different shapes by the action of additives
are described. Controlling these aspects of MOF crystals is demonstrated to dramatically improve volumetric hy-
drogen storage performance. It is anticipated that these lessons are directly applicable to the large family of cubic
MOFs existing in the literature.
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Control of crystal size

The effect of synthetic process parameters such as concentration of reagents, temperature, and time were investi-
gated for their effect on crystal size and size distribution. Reactions for shorter duration (12 to 18 h) at high tem-
perature (110 to 150 °C) afforded cubic crystals with a broad size distribution (on the order of 200-1300 pm).
Longer durations (24 to 72 h) at lower temperatures (60 to 90 °C) yielded crystals with narrow size distributions,
but led to a greater than 15% reduction in BET surface area. The optimal conditions for narrowing the size distri-
bution without compromising surface area were 18-24 h at 100 °C. Variation of the metal:ligand (M:L,
Zn(NO3),.6H,0:H,BDC) molar ratio was studied over the range of 1:1 to 5:1. For samples with M:L =1 or M:L
> 4, the final product had an additional solid phase other than MOF-5. Accordingly, efforts were focused on 1 <
M:L < 4. Additionally, the reactant concentration was varied to tune crystal size distributions.

Eventually, the optimized M:L molar ratio mixtures (3.8:1,2.3:1, 1.7:1, and 1.7: 1(twofold dilution) were heated
at 100 °C for 24 h. These four recipes resulted in four different crystal size distributions: MOF-5(2349), MOF-
5(1500), MOF-5(808), and MOF-5(279), respectively where the number in parentheses indicates the mean crys-
tal size in microns (Figure 1a, Supporting Information). The crystal sizes of all samples and their distributions and
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Figure 9. (a) Optical images of MOF-S crystals with controlled morphologies. (b) and (c). Histogram plot and tabulated crystal size distributions
range and median values for different morphologies of MOF-S. (d) PXRD patterns of new MOF-5 morphologies compared with the simulated
pattern of MOF-S computed from the crystal structure (refcode SAHYOQ). (e) N2 sorption isotherms for different morphologies of MOF-S
(adsorption data are shown with filled symbols while desorption data are shown with empty symbols).
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statistics are represented in Figure 9b and 9c. The crystal sizes of these samples were compared to commercial
MOF-S (Figure 9a) which has submicron average crystal size. Phase purity of all samples was confirmed through
powder X-ray diffraction, and it was observed that powder patterns of all samples agree with the calculated pattern
of MOF-S simulated from the crystal structure (Figure 9d). All samples exhibit very good surface areas (3505-
3464 m?/g) matching the expected theoretical surface area (3563 m*/g) of MOF-S (Figure 9e).

Morphology engineering

Inspired by observations of different morphologies of MOF-S by the action of a tricarboxylic acid linker,"** we
conjectured that carboxylic acids can serve as additives for synthesizing new morphologies. An array of di-, tri-,
and tetra-topic carboxylic acids were examined as morphology modifiers (Figure S1, Supporting Information);
the role of additive concentration in influencing morphology by varying the additive molar ratio while keeping
the ratio of BDC and Zn(NO3),.6H,O (1:2.8 molar ratio) unchanged was also examined (Supporting Infor-
mation).

Ditopic carboxylic acid (H.L) linkers

Several alkane dicarboxylic acids including oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and
suberic acid were tested for their ability to modify morphology when employed as additives at the 5-10 mol%
level. It was observed that introducing these carboxylic acids to the MOF-S reaction mixture afforded no change
in MOF-S$ cubic crystal morphology. It is known that some linear (aromatic) linkers can give rise to new phases
incorporating zinc and two linkers,"** but in all cases examined here the predominant phase was MOEF-S.

Tritopic carboxylic acid (H;L) linkers

Four tritopic carboxylic acids (trimesic acid, [1,1-biphenyl]-3,4',S-tricarboxylic acid, 1,3,5-tris(4-carboxy-
phenyl)benzene (H;BTB) and 2,4,6-tris(4-carboxyphenyl)aniline (NH,-H;BTB)) were screened. Among these,
the addition of H;BTB and NH,-H;BTB to the initial MOF-S reagent mixture were observed to generate different
shaped crystals. When ~4 mol% H;BTB was added to the MOEF-S reaction mixture and heated at 100 °C for 24 h,
uniform octahedral (On) morphology crystals (MOF-5-Oy(600)) are synthesized, while the addition of lower
amounts of H;BTB (~2 mol%) to the MOF-$ reaction mixture at 100 °C for 48 h yielded uniform cuboctahedral
(O.) shaped crystals (MOF-5-O.(856)). The addition of H;BTB at concentrations greater than ~4 mol% resulted
in both needle- and octahedral-shaped crystals which is consistent with a mixed linker MOF where the needles
correspond to UMCM-1.1¢! Similarly, the addition of NH,-H;BTB (~3 mol%) to the reaction mixture at 100 °C
for 24 h resulted in cuboctahedral shaped crystals (MOF-5-O.(575)). Addition of this additive in higher mol%
resulted in the final product having an additional crystalline solid phase other than MOE-S as well as a greater than
15% reduction in BET surface area.

The obtained new morphologies (MOF-5-Ox(600), MOF-5-O.(856), and MOF-5-O(575) where the number
indicates the mean crystal size in microns) and their crystal size distributions and statistics are represented in Fig-
ures 9a, 9b, and 9c). PXRD patterns of these non-cubic morphologies are consistent with the pattern for MOF-5
simulated from the single crystal X-ray structure (Figure 9d). This reveals that the overall framework structure
remains unchanged signaling the ability of additives to engineer morphology without substantially changing crys-
tal structure. All samples (MOF-5-04(600), MOF-5-O.(856), and MOF-5-O.(575)) exhibit a small reduction
(at most ~150 m?/g) in BET surface area compared to optimal cubic MOF-S (Figure 9e).

Tetratopic carboxylic acid (H,L) linkers

Tetratopic (5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid and 5'-(4-carboxy-
phenyl)-[1,1":3',1"-terphenyl]-3,4",5-tricarboxylic acid) carboxylic acids added to the initial MOF-S reagent mix-
ture generated different cuboctahedral, octahedral, and spherical shaped crystals in 24 h at 100 °C respectively
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(Figure S3a, Supporting Information). The PXRD patterns of these samples demonstrate that they are MOF-S
(Figure S3b, Supporting Information). However, with these new morphologies reproducibility is a major issue
and a greater than 15% reduction in BET surface area was observed making them unsuitable for hydrogen storage.

Mechanism of crystal morphology engineering

To understand the evolution of MOF-S morphologies in the presence of additives, the relative growth rates of the
different surface facets of the crystal must be accounted for. Changing reagent concentration, the presence of ad-
ditives, and/or modulation of synthesis conditions can suppress the growth rate of certain crystallographic facets.
Regardless of changes made to the relative concentrations of reagents (M:L molar ratio), temperature, and reaction
time for MOF-S synthesis, cubic morphology crystals with {100} crystallographic facets were consistently ob-
tained. This indicates that slow crystal growth occurs along the {100} facet (Scheme 1a).

crystal growth rate crystal growth rate crystal growth rate
direction : {100} direction : {100} and {111} direction : {111}

Scheme 1. A schematic representation of crystal growth mechanism for all three morphologies of the MOF-S. The cubsic crystal morphology (a)
is controlled by the slower crystal growth rate along {100} facet direction. The additive (m-terephenyl-4,4"-dicarboxylate shown in green) blocks
MOF-S growth along the {111} direction partially or totally at the expense of all {100} facets during crystal growth which results in the formation
of cuboctahedral (b) and octahedral (c) crystal morphologies, respectively.
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lectively interact with certain crystallographic facets and varying their concentration can change the relative
growth rate of different crystallographic facets to control morphology and provides a designed way to control
morphology that complements approaches based on surfactants.'®'**

Packing density

In hydrogen storage applications it is desirable to fill the storage vessel with sorbent in a manner that minimizes
the presence of voids and thereby maximizes the volumetric density. The packing density for all samples was op-
timized and measured using a jolting volumeter (see experimental details in Supporting Information). The num-
ber of taps vs. packing density for commercial MOF-S, size-controlled MOF-S (MOF-5(2349), MOF-5(1500),
MOF-5(808), and MOF-5(279)), and controlled crystal morphology (MOF-5-On(600), MOF-5-O(856), and
MOF-5-O.(575)) samples was monitored. Packing density increases with increasing number of taps until it con-
verges to a constant value (Figure 10). It was observed that all samples exhibit a notable improvement in packing
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density of (63% to 93%) compared to commercial MOF-S (Table 7). Additionally, the packing density of a mix-
ture of size-controlled of MOF-5(2349) and MOF-5(808) in a 7:1 mass ratio'® displays a remarkable (100%)
improvement over commercial MOF-S. All newly synthesized size-controlled cubic and non-cubic morphology
crystals possess low external surface area that allows the larger size crystals to flow more easily. Consequently, these
samples becomes more compact upon tapping when compared to small crystallite sample of commercial MOE-§,
which exhibits high external surface area with more cohesive behavior impeding free flow of crystals.'**'*” Empir-
ically, non-cubic crystal morphology samples (MOF-5-O4(600), MOF-5-O(856), and MOF-5-O.(575)) have
less electrostatic charge than cubic MOF-5 samples and are relatively free-flowing leading to the greater individual
packing densities. However, in a practical storage system some degree of mechanical compaction may be used to
further increase capacity beyond powder density. It is not certain that these improved powder densities can trans-
late to improvements after densification.

Compaction study

Hydrogen gas storage measurements were performed for commercial MOEF-S§, size-controlled MOF-S, a bimodal
mixture of MOF-5(2349) and MOF-5(808), and octahedral crystal morphology samples to quantify the influ-
ence of mechanical compaction on the hydrogen adsorption capacity at 77K. Compaction represents an approach
to further densify materials beyond the observed tap densities albeit with the risk of structural damage due to high
contact pressures. Selected measurements are provided in Figure S6, Supporting Information, which demonstrate
the excess hydrogen adsorption isotherms after compacting samples to successively higher densities. The com-
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trolled MOF-5 (MOF-5(2349), 0.70

MOEF-5(1500), MOEF-5(808), i MLt S RPN

and MOF-5(279)) samples retain - :. .

greater than 95% of their excess g 09t ) * N
gravimetric hydrogen capacityup ¢ §_ @ commercial MOF:S L \—’v\‘\- & ---0.85
to a compaction density fraction ~E§ o8 | o MoFs(z3e3) \.\\
(packing density/crystal density) ','% 3 MOF-5(1300) .
of between 57-70%; thereafter 2 g 07 } © MOF-5(808)

their hydrogen capacity decreases X 5 * MOF-5(279)

with increasing compaction den- X 06 | © MOF-5-Oh(600)

sity of the sample (Figure 11)'e8 € + MOF-5(2349):MOF-5(808), 7:1 mixture

consistent with structural dam- 05

age.'”” By contrast, the size-con- 0.0 0.2 0.4 0.6 0.8 10
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Figure 11. Excess adsorption of hydrogen gas vs. compaction density. The x-axis corre-
of MOF'5(2349) and MOF- sponds to the density of the compacted MOF-S sample divided by its crystal density (0.594
5(808) in a 7:1 mass ratio and g/cc).'® The y-axis corresponds to the ratio between the maximum excess hydrogen adsorp-
MOE- S_Oh(6()()) samples retain  tionat77K for a MOEF-S sample compacted to a specific density by the value for the initial

high gravimetric capacity up to value measured for the MOF-S sample.

compaction density of approxi-

mately 75% vs. excess hydrogen gas adsorption. Importantly, the compaction density for MOF-5(2349), MOEF-
5(1500), MOF-5(808) and MOF-5(279), 7:1 mixture, and MOF-5-O,(600) samples exhibit improvements over
the compacted density of commercial MOEF-$ with negligible performance loss respectively. The 7:1 mixture re-
sulted in the most notable density improvement of 33% when comparing the inflection point from the commercial
MOF-S to maintain powder adsorption performance (green dashed vs black dashed trend lines). This result indi-
cates that an improvement in powder density results in less damage upon compaction, presumably due to the pres-
ence of an optimized arrangement of crystallites and minimization of void space prior to compression. Conse-
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quently, the present samples achieve an unprecedented density of 0.45 g/cm® while maintaining gravimetric per-
formance (See Table SS, Supporting Information). Any percentage gain in volumetric capacity from the density
improvement is a direct gain in driving range contributing to a projected system can exceed the performance of
the current state-of-the art 700 bar compressed gas system in tandem with system engineering improvements as
shown in Figure 12.

external system volume required to store 5.6 kg H,
W increase ' Decrease M Total

350.0

300.0 292.6L

-12.2L
250.0 681
Storage System Projections b
200.0 183.6L
-53.8L 6L

150.0

external volume (L)

The correlation between material level and system-

level volumetric hydrogen capacities represented in 000

Figure 12. The HSECoE adsorbent system model 500

used for these system predictions takes as input MOF 00
d\?“* “\0""’ .\*\\\‘e 9,('\“?’ .\*\\\‘e \o‘e\
material properties and as output predicts the system TP e 130 e 2
W o‘(\«\‘ﬂp% _«\oga\w@%\ & ‘oqeﬁ\ « e,a\g‘ ¢
characteristics of a full scale 5.6 kg storage ¢ system. CE T N 0T

The system assumptions include a baseline multi-

. . . Fi 12. Waterfall chart depicting the total external syst 1 f
layer vacuum insulation (MLVI) thickness of 23 mm gure o CePIC TG (€ oA SYerd’ SySTem vortme ©

bimodal MOF-5(2349):MOF-5(808), 7:1 mixture sample required to
and a 3/ 8-inch liquid N, channels to reduce the type- store 5.6 kg of usable hydrogen gas. Starting from an empty tank storing

1 tank temperature during fuehng. The initial system hydrogen gas at 77 K and 100 bar, the reduction in external volume is
shown for MOF-5(2349):MOF-5(808), 7:1 mixture sample (at 0.40 g/cc

model capacity prediction is based on a full state and ;< o/ cc without performance loss) to the systern.

an empty state of 100 bar/77 K and 5 bar/160 K, re-

spectively. The complete set of assumptions and schematics of the HSECoE system adsorbent system model have
been published by Purewal et al.'®” The effects of the improvements on the system-level volumetric capacity from
the 7:1 mixture is depicted in the Figure 12 (waterfall chart). The system engineering improvements include op-
timization of the vacuum insulation (10 mm), reduction of the N, channel diameter (1/4”), and SS type 1 tank.
Controlling crystal size and use of bimodal distribution of MOF-5 in tandem with system optimization leads to a
large decrease in the external volume of about 109L and exhibits a 30.5 g/L volumetric capacity, sufficient to sur-
pass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE 2020
target for volumetric capacity (30 g/L). Similarly impressive results are obtained with MOF-5-On(600) of a single
size suggesting a pathway for even more dramatic improved by controlling size distribution in tandem with crystal
shape.

Summary - Crystal Engineering

The enhancement volumetric storage density of hydrogen storage systems to levels required for automotive appli-
cations is a longstanding problem that particularly plagues physical adsorbents. Although compaction of MOFs
has been extensively investigated, the challenge of performance erosion as single crystal densities are approached
is universally observed. Here, the ability to achieve high volumetric storage densities (75% of single crystal den-
sity) without substantial degradation is achieved. A key to success is the use of crystals with a bimodal size distri-
bution or octahedral morphology sample that can fill space efficiently within a bed and can be compacted with
minimal structural damage. A complementary approach based on morphology engineering is also shown to be
promising and relies on face-selective inhibition of crystal growth to induce non-cubic morphologies. The princi-
ples developed here are fully applicable to the large class of cubic MOF sorbents currently being considered in
areas as diverse batteries, carbon capture, separations, and fuel gas storage.
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End of project goal : Demonstrate either: (A) 1-2 MOFs having usable volumetric capacities exceeding that of the state
of the art material (S0 g/L, single-crystal/pressure swing), with less than 10% compromise to gravimetric capacity, or
(B) at least one MOF with a packing density equivalent to 70% of the single crystal density with <15% decrease in grav-
imetric performance.

As shown in Fig. 11, we successfully achieved the end of project goal “(B)” by demonstrating “at least one MOF
with a packing density equivalent to 70% of the single crystal density with <15% decrease in gravimetric perfor-
mance.” Four MOFs samples/morphologies satisfy this milestone: MOF-5-Oh(600), MOF-5(808), MOEF-
5(2349), and a 7:1 mixture of MOF-5(2349):MOF-5(808). Importantly, the packing density of a mixture of size-
controlled of MOF-5(2349) and MOF-5(808) in a 7:1 mass ratio'®® displays a remarkable (100%) improvement
over commercial MOF-S.

Acknowledgement

Financial support for this study was provided by the US Department of Energy, Office of Energy Efficiency and
Renewable Energy, Grant no. DE-EE0008093. Partial computing resources were provided by the NSF via
grant 1531752 MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics (Tech.
Monitor: Ed Walker). The authors acknowledge Jesse Adams, Dr. Zeric Hulvey, Ms. Courtney Pailing, Mr. Nick
Wunder, Ms. Nalinrat Guba and Dr. Caleb Phillips for facilitating web hosting of the ML models and the develop-
ment of an application programmers interface. A.A. acknowledges Profs. Randall Snurr and Tom Woo for provid-
ing access to their MOF databases; Dr. Maciej Haranczyk for use of the Zeo++ code and the mail-order MOF
database; and Prof. Adam ]. Matzger, Dr. Antek G. Wong-Foy, Dr. Saona Seth, and Dr. Yiyang Liu for support for
MOF design.

References

(1)  Ahmed, A; Seth, S.; Purewal, ].; Wong-Foy, A. G.; Veenstra, M.; Matzger, A. J.; Siegel, D. J. Exceptional
Hydrogen Storage Achieved by Screening Nearly Half a Million Metal-Organic Frameworks. Nat.
Commun. 2019, 10 (1), 1568. https://doi.org/10.1038/541467-019-09365-w.

(2) Ahmed, A;; Liu, Y.; Purewal, J.; Tran, L. D.; Veenstra, M.; Wong-Foy, A.; Matzger, A.; Siegel, D.
Balancing Gravimetric and Volumetric Hydrogen Density in MOFs. Energy Environ. Sci. 2017, 10, 2459—
2471. https://doi.org/10.1039/C7EE02477K.

(3) Wong-Foy, A. G.; Matzger, A.J.; Yaghi, O. M. Exceptional H2 Saturation Uptake in Microporous Metal-
Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 3494-3495. https://doi.org/10.1021/ja058213h.

(4)  Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National
Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catal.
Today 2007, 120 (3), 246-256. https://doi.org/10.1016/j.cattod.2006.09.022.

(5)  Greene, D.L,; Joseck, F.; Duleep, G.; -Oak, G. XI-13 FY 2013 Annual Progress Report DOE Hydrogen and
Fuel Cells Program DOE Manager Subcontractor: Overall Objectives Contribution to Achievement of DOE
Systems Analysis Milestones XI.1 Worldwide Status of Hydrogen Fuel Cell Vehicle Technology and Prospe.

(6)  Allendorf, M. D.; Hulvey, Z.; Gennett, T.; Ahmed, A.; Autrey, T.; Camp, J.; Seon Cho, E.; Furukawa, H.;
Haranczyk, M.; Head-Gordon, M.; et al. An Assessment of Strategies for the Development of Solid-State
Adsorbents for Vehicular Hydrogen Storage. Energy Environ. Sci. 2018, 11 (10), 2784-2812.
https://doi.org/10.1039/C8EE01085D.

(7)  Yang,J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High Capacity Hydrogen Storage Materials: Attributes for
Automotive Applications and Techniques for Materials Discovery. Chem. Soc. Rev. 2010, 39, 656-675.

29



(8)

(9)

(10)

(11)

(12)

(13)

(14)
(1)

(16)
(17)

(18)

(19)

(20)

(21)

(22)

https://doi.org/10.1039/b802882f.

Long, J. R. 201 “Hydrogen Storage in Metal-Organic Frameworks,” ]. R. Long; U.S. Department of Energy,
Hydrogen and Fuel Cells Program 2015 Annual Merit Review Proceedings: Project ST103.
Https://Www.Hydrogen.Energy.Gov/Pdfs/Review1S5/St103_long 2015 o.Pdf.; 2015.

DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles,
Https://Energy.Gov/Eere/Fuelcells/Doe-Technical-Targets-Onboard-Hydrogen-Storage-Light-Duty-
Vehicles.

Astiaso Garcia, D.; Barbanera, F.; Cumo, F.; Di Matteo, U.; Nastasi, B. Expert Opinion Analysis on
Renewable Hydrogen Storage Systems Potential in Europe. Energies 2016, 9 (11), 963.
https://doi.org/10.3390/en9110963.

Riis, T.; Sandrock, G.; Ulleberg, @.; Vie, P. J. S. Hydrogen Storage R&D: Priorities and Gaps. In
Hydrogen Production and Storage: R&’D Priorities and Gaps; International Energy Agency: Paris, France,
2006; pp 19-33.

Purewal, J.; Veenstra, M.; Tamburello, D.; Ahmed, A.; Matzger, A. J.; Wong-Foy, A. G.; Seth, S.; Liu, Y.;
Siegel, D. J. Estimation of System-Level Hydrogen Storage for Metal-Organic Frameworks with High
Volumetric Storage Density. Int. . Hydrogen Energy 2019, 44 (29).
https://doi.org/10.1016/j.ijhydene.2019.04.082.

Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T. F.; Ashuri, T.; Krohn, J;
Manoharan, Y.; Hosseini, S. E.; Butler, B.; et al. Hydrogen Fuel Cell Vehicles; Current Status and Future
Prospect. Appl. Sci. 2019, 9 (11),2296. https://doi.org/10.3390/app9112296.

Makridis, S. S. Hydrogen Storage and Compression. In Methane and Hydrogen for Energy Storage;
Carriveau, R,, Ting, D. S.-K,, Eds.; The Institution of Engineering and Technology, 2016; pp 1-28.
"Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence,”
Mike Veenstra, Jun Yang, Chunchuan Xu, Manuela Gaab, Lena Arnold, Ulrich Muller, Donald J. Siegel,
and Yang Ming.; U.S. Department of Energy, Hydrogen and Fuel Cells Program 2014 Annual Merit
Review Proceedings: Project
ST010.https://www.hydrogen.energy.gov/pdfs/reviewl4/st010_veenstra 2014 o.pdf.

Ohrstrom, L. Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and
Why We Need Them. Crystals 2018, 5 (1), 154-162. https://doi.org/10.3390/ cryst5010154.

Fischer, R. A.; Schwedler, I. Terminologie von Metall-Organischen Geriistverbindungen Und
Koordinationspolymeren (IUPAC-Empfehlungen 2013). Angew. Chemie 2014, 126 (27), 7209-7214.
https://doi.org/10.1002/ange.201400619.

Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O’Keeffe,
M.; Paik Suh, M.; Reedijk, J. Terminology of Metal-Organic Frameworks and Coordination Polymers
(IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85 (8), 1715-1724.
https://doi.org/10.1351/PAC-REC-12-11-20.

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.
S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size
Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9-10), 1051-1069.
https://doi.org/10.1515/pac-2014-1117.

Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Ohrstrom, L.; O’Keeffe,
M.; Suh, M. P.; Reedijk, J. Coordination Polymers, Metal-Organic Frameworks and the Need for
Terminology Guidelines. CrystEngComm 2012, 14 (9),3001. https://doi.org/10.1039/c2ce06488;.
O’Keeffe, M. Nets, Tiles, and Metal-Organic Frameworks. APL Mater. 2014, 2 (12), 124106.
https://doi.org/10.1063/1.4901292.

Tranchemontagne, D. J.; Mendoza-Cortés, ]. L.; O'Keeffe, M.; Yaghi, O. M. Secondary Building Units,
Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1257.
https://doi.org/10.1039/b817735;j.

30



(23)
(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2018, 48 (3), 722-730.
https://doi.org/10.1021/ar500432k.

Kontijevskis, A. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular
Frameworks. J. Chem. Inf. Model. 2017, 57 (4), 680-699. https://doi.org/10.1021/acs.jcim.7b00006.
Martin, R. L.; Smit, B.; Haranczyk, M. Addressing Challenges of Identifying Geometrically Diverse Sets
of Crystalline Porous Materials. J. Chem. Inf. Model. 2012, 52 (2), 308-318.
https://doi.org/10.1021/ci200386x.

Sun, D.; Sun, F.; Deng, X.; Li, Z. Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for
Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-
MOF-74. Inorg. Chem. 2018, 54 (17), 8639-8643. https://doi.org/10.1021/acs.inorgchem.5b01278.
Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, ].; Knobler, C. B.; Wang, B.; Yaghi, O. M.
Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967),
846-850. https://doi.org/10.1126/science.1181761.

Park, J.; Kim, H.; Han, S. S.; Jung, Y. Tuning Metal-Organic Frameworks with Open-Metal Sites and Its
Origin for Enhancing CO , Affinity by Metal Substitution. J. Phys. Chem. Lett. 2012, 3 (7), 826-829.
https://doi.org/10.1021/jz300047n.

Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-
Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic
Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29 (7), 2618-2625.
https://doi.org/10.1021/acs.chemmater.7b00441.

Groom, C. R;; Bruno, . J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta
Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72 (2), 171-179.
https://doi.org/10.1107/52052520616003954.

Goldsmith, ].; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Theoretical Limits of Hydrogen Storage in
Metal-Organic Frameworks: Opportunities and Trade-Offs. Chem. Mater. 2013, 25 (16), 3373-3382.
https://doi.org/10.1021/cm401978e.

Altintas, C.; Avci, G.; Daglar, H.; Nemati Vesali Azar, A.; Erucar, I; Velioglu, S.; Keskin, S. An Extensive
Comparative Analysis of Two MOF Databases: High-Throughput Screening of Computation-Ready
MOFs for CH4 and H2 Adsorption. J. Mater. Chem. A 2019, 7 (16), 9593-9608.
https://doi.org/10.1039/c9ta01378d.

Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T; Farha, O.
K; Sholl, D. S.; Snurr, R. Q. Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To
Enable High-Throughput Screening of Nanoporous Crystals. Chem. Mater. 2014, 26, 6185-6192.
Chung, Y. G.; Haldoupis, E.; Bucior, B. J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vogiatzis, K. D.;
Milisavljevic, M.; Ling, S.; Camp, J. S.; et al. Advances, Updates, and Analytics for the Computation-
Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019. J. Chem. Eng. Data 2019,
64 (12), 5985-5998. https://doi.org/10.1021/acs.jced.9b0083S.

Chen, T.; Manz, T. A. Identifying Misbonded Atoms in the 2019 CoRE Metal-Organic Framework
Database. RSC Adv. 2020, 10 (45), 26944-26951. https://doi.org/10.1039/DORA02498H.

Wilmer, C. E; Leaf, M,; Lee, C. Y.; Farha, O. K;; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Large-Scale
Screening of Hypothetical Metal-Organic Frameworks. Nat. Chem. 2011, 4 (2), 83-89.
https://doi.org/10.1038/nchem.1192.

Aghaji, M. Z.; Fernandez, M.; Boyd, P. G.; Daff, T. D.; Woo, T. K. Quantitative Structure — Property
Relationship Models for Recognizing Metal Organic Frameworks ( MOFs ) with High CO 2 Working
Capacity and CO2/CH#4 Selectivity for Methane Purification. 2016, 4505-4511.
https://doi.org/10.1002/ejic.201600365.

Martin, R. L.; Lin, L. C,; Jariwala, K.; Smit, B.; Haranczyk, M. Mail-Order Metal-Organic Frameworks
(MOFs): Designing Isoreticular MOF-S Analogues Comprising Commercially Available Organic

31



(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(s1)

(52)

(83)

(54)

Molecules. J. Phys. Chem. C 2013, 117 (23), 12159-12167. https://doi.org/10.1021/jp401920y.

Bao, Y.; Martin, R. L.; Haranczyk, M.; Deem, M. W. In Silico Prediction of MOFs with High Deliverable
Capacity or Internal Surface Area. Phys. Chem. Chem. Phys. 2018, 17 (18), 11962-11973.
https://doi.org/10.1039/CSCP00002E.

Witman, M,; Ling, S.; Anderson, S.; Tong, L.; Stylianou, K. C,; Slater, B.; Smit, B.; Haranczyk, M. In
Silico Design and Screening of Hypothetical MOF-74 Analogs and Their Experimental Synthesis. Chem.
Sci. 2016, 7 (9), 6263-6272. https://doi.org/10.1039/C6SC01477A.

Chung, Y. G.; Gomez-gualdrén, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.;
Stoddart, J. F.; You, F.; Hupp, J. T ; et al. In Silico Discovery of Metal-Organic Frameworks for
Precombustion CO 2 Capture Using a Genetic Algorithm. 2016, No. October.

Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Go, D. A. Role of Pore Chemistry and Topology in the
CO 2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chem. Mater
2018, 30, 11. https://doi.org/10.1021/acs.chemmater.8b02257.

Anderson, G.; Schweitzer, B.; Anderson, R.; Gémez-Gualdrén, D. A. Attainable Volumetric Targets for
Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning. J.
Phys. Chem. C 2019, 123 (1), 120-130. https://doi.org/10.1021/acs.jpcc.8b09420.

Anderson, R.; Gémez-Gualdrén, D. A. Increasing Topological Diversity during Computational
“Synthesis” of Porous Crystals: How and Why. CrystEngComm 2019, 21 (10), 1653-1665.
https://doi.org/10.1039/c8ce01637b.

Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T ;
Yildirim, T; Farha, O. K,; Snurr, R. Q. Computational Design of Metal-Organic Frameworks Based on
Stable Zirconium Building Units for Storage and Delivery of Methane. Chem. Mater. 2014, 26 (19),
5632-5639. https://doi.org/10.1021/cm502304e.

Bao, Y.; Martin, R. L.; Simon, C. M.; Haranczyk, M.; Smit, B.; Deem, M. W. In Silico Discovery of High
Deliverable Capacity Metal-Organic Frameworks. J. Phys. Chem. C 2018, 119 (1), 186-195.
https://doi.org/10.1021/jp5123486.

Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-
Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater.
2012, 149 (1), 134-141. https://doi.org/10.1016/j.micromeso.2011.08.020.

Addicoat, M. A.; Coupry, D. E.; Heine, T. AuToGraFS: Automatic Topological Generator for
Framework Structures. J. Phys. Chem. A 2014, 118 (40), 9607-9614.
https://doi.org/10.1021/jpS07643v.

Boyd, P. G.; Woo, T. K. A Generalized Method for Constructing Hypothetical Nanoporous Materials of
Any Net Topology from Graph Theory. CrystEngComm 2016, 18 (21), 3777-3792.
https://doi.org/10.1039/C6CE00407E.

Gomez-Gualdrén, D. A.; Colén, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T ;
Farha, O. K,; Zhang, J.; Snurr, R. Q. Evaluating Topologically Diverse Metal-Organic Frameworks for
Cryo-Adsorbed Hydrogen Storage. Energy Environ. Sci. 2016, 9 (10), 3279-3289.
https://doi.org/10.1039/C6EE02104B.

Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.; Kumar, S. G. H.; Collins, S. P.; Burns, T';
Woo, T. K,; Farha, O.; Snurr, R. Q,; et al. Inverse Design of Nanoporous Crystalline Reticular Materials
with Deep Generative Models. Https://D0i.Org/10.26434/Chemrxiv.12186681.V2. 2020.
https://doi.org/10.26434/ CHEMRXIV.12186681.V2.

Sadus, R. J. Molecular Simulation of Fluids: Theory, Algorithms, and Object-Orientation.; Elsevier:
Amsterdam, 1999.

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, NY,
1989.

Frenkel, D.; Smit, B. Understanding Molecular Simulation : From Algorithms to Applications, 2nd ed.;

32



(85)
(56)

(57)

(s8)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

Academic Press, Inc.: Orlando, FL, 2001.

Hill, T. L. An Introduction to Statistical Thermodynamics; Dover Publications, 1986.

Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S. Molecular Simulation On the Inner Workings of
Monte Carlo Codes On the Inner Workings of Monte Carlo Codes. Mol. Simul. 2013, 39, 14-185.
https://doi.org/10.1080/08927022.2013.819102.

Fernandez, M.; Boyd, P. G.; Daff, T. D.; Aghaji, M. Z.; Woo, T. K. Rapid and Accurate Machine Learning
Recognition of High Performing Metal Organic Frameworks for CO 2 Capture. J. Phys. Chem. Lett.
2014, 5 (17), 3056-3060. https://doi.org/10.1021/jz501331m.

Martin, R. L.; Simon, C. M.; Smit, B.; Haranczyk, M. In Silico Design of Porous Polymer Networks:
High-Throughput Screening for Methane Storage Materials. J. Am. Chem. Soc. 2014, 136 (13), 5006~
5022. https://doi.org/10.1021/ja4123939.

Colén, Y. ]J.; Gémez-Gualdrén, D. A,; Snurr, R. Q. Topologically Guided, Automated Construction of
Metal-Organic Frameworks and Their Evaluation for Energy-Related Applications. Cryst. Growth Des.
2017,17(11), 5801-5810. https://doi.org/10.1021/acs.cgd.7b00848.

Boyd, P. G.; Moosavi, S. M.; Witman, M.; Smit, B. Force-Field Prediction of Materials Properties in
Metal-Organic Frameworks. J. Phys. Chem. Lett. 2017, 8 (2), 357-363.
https://doi.org/10.1021/acs.jpclett.6b02532.

Thornton, A. W.; Simon, C. M.; Kim, ].; Kwon, O.; Deeg, K. S.; Konstas, K.; Pas, S. J.; Hill, M. R ;
Winkler, D. A.; Haranczyk, M.; et al. Materials Genome in Action: Identifying the Performance Limits of
Physical Hydrogen Storage. Chem. Mater. 2017, 29 (7), 2844-2854.
https://doi.org/10.1021/acs.chemmater.6b04933.

Bobbitt, N. S.; Snurr, R. Q. Molecular Simulation Molecular Modelling and Machine Learning for High-
Throughput Screening of Metal-Organic Frameworks for Hydrogen Storage Molecular Modelling and
Machine Learning for High-Throughput Screening of Metal-Organic Frameworks for Hydrogen
Storage. 2019. https://doi.org/10.1080/08927022.2019.1597271.

Borboudakis, G.; Stergiannakos, T'; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G. E.
Chemically Intuited, Large-Scale Screening of MOFs by Machine Learning Techniques. npj Comput.
Mater. 2017, 3. https://doi.org/10.1038/s41524-017-0045-8.

Broom, D. P.; Webb, C. J.; Hurst, K. E.; Parilla, P. A.; Gennett, T.; Brown, C. M.; Zacharia, R.;
Tylianakis, E.; Klontzas, E.; Froudakis, G. E.; et al. Outlook and Challenges for Hydrogen Storage in
Nanoporous Materials. Appl. Phys. A 2016, 122 (3), 151. https://doi.org/10.1007/s00339-016-9651-4.
Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and
Materials Science. Nature 2018, 559 (7715), 547-555. https://doi.org/10.1038/s41586-018-0337-2.
Wahiduzzaman, M.; Walther, C. F. J.; Heine, T. Hydrogen Adsorption in Metal-Organic Frameworks:
The Role of Nuclear Quantum Effects. J. Chem. Phys. 2014, 141 (6), 064708.
https://doi.org/10.1063/1.4892670.

Durette, D.; Bénard, P.; Zacharia, R.; Chahine, R. Investigation of the Hydrogen Adsorbed Density
inside the Pores of MOF-5 from Path Integral Grand Canonical Monte Carlo at Supercritical and
Subcritical Temperature. Sci. Bull. 2016, 61 (8), $94-600. https://doi.org/10.1007/s11434-016-1027-9.
Fischer, M.; Hoffmann, F.; Froba, M. Preferred Hydrogen Adsorption Sites in Various MOFs-A
Comparative Computational Study. ChemPhysChem 2009, 10 (15), 2647-2657.
https://doi.org/10.1002/cphc.200900459.

Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent Verification of the Saturation Hydrogen Uptake
in MOF-177 and Establishment of a Benchmark for Hydrogen Adsorption in Metal-Organic
Frameworks. J. Mater. Chem. 2007, 17 (30), 3197. https://doi.org/10.1039/b703608f.

Fischer, M.; Hoffmann, F.; Froba, M. Preferred Hydrogen Adsorption Sites in Various MOFs-A
Comparative Computational Study. ChemPhysChem 2009, 10 (15), 2647-2657.
https://doi.org/10.1002/cphc.200900459.

33



(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)
(81)
(82)

(83)

(84)

(85)
(86)
(87)

(88)

Ahmed, A;; Siegel, D. J. HYMARC datahub https://datahub.hymarc.org/dataset/computational-
prediction-of-hydrogen-storage-capacities-in-mofs.

Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. Machine Learning Using Combined
Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal
Organic Frameworks (MOFs). ACS Comb. Sci. 2017, 19 (10), 640-645.
https://doi.org/10.1021/acscombsci.7b00056.

Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. Large-Scale Quantitative Structure—Property
Relationship (QSPR) Analysis of Methane Storage in Metal-Organic Frameworks. J. Phys. Chem. C
2013, 117,7681-7689. https://doi.org/10.1021/jp4006422.

Fernandez, M.; Trefiak, N. R.; Woo, T. K. Atomic Property Weighted Radial Distribution Functions
Descriptors of Metal-Organic Frameworks for the Prediction of Gas Uptake Capacity. J. Phys. Chem. C
2013,117(27), 14095-14108. https://doi.org/10.1021/jp404287t.

Fernandez, M.; Barnard, A. S. Geometrical Properties Can Predict CO ; and N , Adsorption
Performance of Metal-Organic Frameworks (MOFs) at Low Pressure. ACS Comb. Sci. 2016, 18 (S),
243-252. https://doi.org/10.1021/acscombsci.5b00188.

Nanoporous Materials Genome Center. http://www.chem.umn.edu/nmgc/.

Hastie, T; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics;
Springer New York: New York, NY, 2009. https://doi.org/10.1007/978-0-387-84858-7.

Thornton, A. W.; Simon, C. M.; Kim, ].; Kwon, O.; Deeg, K. S.; Konstas, K,; Pas, S. J.; Hill, M. R.;
Winkler, D. A.; Haranczyk, M.; et al. Materials Genome in Action: Identifying the Performance Limits of
Physical Hydrogen Storage. Chem. Mater. 2017, 29 (7), 2844-2854.
https://doi.org/10.1021/acs.chemmater.6b04933.

Dorugade, A. V; Kashid, D. N. Alternative Method for Choosing Ridge Parameter for Regression; 2010; Vol.
4.

Van Wieringen, W. N. Lecture Notes on Ridge Regression; 2020.

Smola, A.J.; Smola, A. J.; Scholkopf, B. A Tutorial on Support Vector Regression. 2004.

Bucior, B. J.; Bobbitt, N. S.; Islamoglu, T.; Goswami, S.; Gopalan, A.; Yildirim, T.; Farha, O. K.; Bagheri,
N.; Snurr, R. Q. Energy-Based Descriptors to Rapidly Predict Hydrogen Storage in Metal-Organic
Frameworks. Mol. Syst. Des. Eng. 2018. DOI 10.1039/c8me000S0f.
https://doi.org/10.1039/c8me00050f.

Lan, Y.; Yan, T.; Tong, M.; Zhong, C. Large-Scale Computational Assembly of Ionic Liquid/MOF
Composites: Synergistic Effect in the Wire-Tube Conformation for Efficient CO2/CH4 Separation. J.
Mater. Chem. A 2019, 7 (20), 12556-12564. https://doi.org/10.1039/c9ta01752f.

Li, S.; Chung, Y. G.; Simon, C. M,; Snurr, R. Q. High-Throughput Computational Screening of
Multivariate Metal- Organic Frameworks (MTV-MOFs) for CO 2 Capture. J. Phys. Chem. Lett 2017, 8,
19. https://doi.org/10.1021/acs.jpclett.7b02700.

Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63 (1), 3-42.
https://doi.org/10.1007/s10994-006-6226-1.

Ahmed, A.; Siegel, D. J. HYMARC Sorbent Machine Learning Model: Predicting the hydrogen storage
capacity of metal-organic frameworks via machine learning. https://sorbent-mlL.hymarc.org/.

Boyd, P. G.; Chidambaram, A.; Garcia-Diez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gladysiak, A.;
Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; et al. Data-Driven Design of Metal-Organic
Frameworks for Wet Flue Gas CO2 Capture. Nature 2019, 576 (7786), 253-256.
https://doi.org/10.1038/s41586-019-1798-7.

Boyd, P. G.; Chidambaram, A.; Garcia-Diez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gladysiak, A.;
Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; et al. Data-Driven Design of Metal-Organic
Frameworks for Wet Flue Gas CO2 Capture, Materials Cloud Archive 2018.0016/v3 (2019), Doi:
10.24435/Materialscloud:2018.0016/V3. Nature 2019, 576 (7786), 253-256.

34



https://doi.org/10.1038/s41586-019-1798-7.

(89) R-WLLFHS: Https://Github.Com/Snurr-Group/Reduced-HMOF-Database.

(90) Garcia-Holley, P.; Schweitzer, B.; Islamoglu, T.; Liu, Y.; Lin, L.; Rodriguez, S.; Weston, M. H.; Hupp, J.
T.; Gémez-Gualdroén, D. A,; Yildirim, T'; et al. Benchmark Study of Hydrogen Storage in Metal-Organic
Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett. 2018, 748-754.
https://doi.org/10.1021/acsenergylett.8b00154.

(91) Wolpert, D. H.; Macready, W. G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput.
1997,1(1).

(92) Breiman, L.; Friedman, J. H.; Olshen, R. A; Stone, C.]. Classification And Regression Trees; Routledge,
2017. https://doi.org/10.1201/9781315139470.

(93) Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an Application
to Boosting. ]. Comput. Syst. Sci. 1997, 55 (1),119-139. https://doi.org/10.1006/jcss.1997.1504.

(94) Drucker, H. Improving Regressors using Boosting Techniques
https://dl.acm.org/doi/10.5555/645526.657132 (accessed Nov 18,2020).

(95) Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24 (2), 123-140.
https://doi.org/10.1023/A:1018054314350.

(96) Breiman, L. Random Forests. Mach. Learn. 2001, 45 (1), 5-32.
https://doi.org/10.1023/A:1010933404324.

(97) Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29 (5),
1189-1232.

(98) Chang, C.-C; Lin, C.-J. LIBSVM: A Library for Support Vector Machines; 2001.

(99) Platt, ]. C.; Platt, J. C. Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. Adv. LARGE MARGIN Classif. 1999, 61--74.

(100) Buhmann, M. D. Radial Basis Functions: Theory and Implementations; Cambridge University Press:
Cambridge, United Kingdom, 2002.

(101) Fan,R.-E; Chang, K.-W.; Hsieh, C.-].; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A Library for Large Linear
Classification; 2008; Vol. 9.

(102) Rifkin, R. M. .; Lippert, R. A. Notes on Regularized Least Squares; 2007.

(103) Altman, N. S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat.
1992, 46 (3), 175-185. https://doi.org/10.1080/00031305.1992.10475879.

(104) Freund, Y.; Schapire, R. E. A Short Introduction to Boosting. . Japanese Soc. Artif. Intell. 1999, 14 (5),
771-780.

(105) Fernandez-Delgado, M.; Sirsat, M. S.; Cernadas, E.; Alawadi, S.; Barro, S.; Febrero-Bande, M. An
Extensive Experimental Survey of Regression Methods. Neural Networks 2019, 111, 11-34.
https://doi.org/10.1016/J.NEUNET.2018.12.010.

(106) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;
Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn.
Res. 2011, 12,2825-2830.

(107) Richard, M.-A.; Bénard, P.; Chahine, R. Gas Adsorption Process in Activated Carbon over
a Wide Temperature Range above the Critical Point. Part 1: Modified Dubinin-Astakhov Model.
Adsorption 2009, 15 (1), 43-51. https://doi.org/10.1007/5s10450-009-9149-x.

(108) Gomez-Gualdron, D. A.; Wang, T. C.; Garcia-Holley, P.; Sawelewa, R. M.; Argueta, E.; Snurr, R. Q.;
Hupp, J. T; Yildirim, T'; Farha, O. K. Understanding Volumetric and Gravimetric Hydrogen Adsorption
Trade-off in Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9 (39), 33419-33428.
https://doi.org/10.1021/acsami.7b01190.

(109) Diiren, T.; Bae, Y.-S.; Snurr, R. Q. Using Molecular Simulation to Characterise Metal-Organic
Frameworks for Adsorption Applications. Chem. Soc. Rev. 2009, 38 (5), 1237.
https://doi.org/10.1039/b803498m.

35



(110) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-Organic Frameworks.
Chem. Soc. Rev. 2009, 38 (5), 1330. https://doi.org/10.1039/b802352m.

(111) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-
Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater.
2012, 149 (1), 134-141. https://doi.org/10.1016/j.micromeso.2011.08.020.

(112) Gémez-Gualdrén, D. A.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Application of
Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal-Organic Frameworks.
J. Am. Chem. Soc. 2016, 138 (1),215-224. https://doi.org/10.1021/jacs.5b10266.

(113) Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and
Perspectives. Adv. Sci. 2019, 1900808. https://doi.org/10.1002/advs.201900808.

(114) Wei,].; Chu, X.; Sun, X.; Xu, K;; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials
Science. InfoMat 2019, 1 (3), 338-358. https://doi.org/10.1002/inf2.12028.

(115) Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Klontzas, E.; Froudakis, G. A Robust Machine Learning
Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials. J. Phys. Chem. A 2019,
acs.jpca.9b03290. https://doi.org/10.1021/acs.jpca.9b03290.

(116) Panella, B.; Hirscher, M.; Roth, S. Hydrogen Adsorption in Different Carbon Nanostructures. Carbon N.
Y. 2005, 43 (10),2209-2214. https://doi.org/10.1016/j.carbon.2005.03.037.

(117) Kiyabuy, S.; Lowe, J. S.; Ahmed, A.; Siegel, D. J. Computational Screening of Hydration Reactions for
Thermal Energy Storage: New Materials and Design Rules. Chem. Mater. 2018, 30 (6), 2006-2017.
https://doi.org/10.1021/acs.chemmater.7b05230.

(118) Moosavi, S. M.; Chidambaram, A.; Talirz, L.; Haranczyk, M.; Stylianou, K. C.; Smit, B. Capturing
Chemical Intuition in Synthesis of Metal-Organic Frameworks. Nat. Commun. 2019, 10 (1), 539.
https://doi.org/10.1038/s41467-019-08483-9.

(119) Zwillinger, D.; Kokoska, S.; Raton, B.; New, L.; Washington, Y. Standard Probability and Statistics Tables
and Formulae CRC; 2000.

(120) Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9 (3), 10-20.
https://doi.org/10.1109/MCSE.2007.58.

(121) Millman, K. J.; Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 2011, 13 (2), 9-12.
https://doi.org/10.1109/MCSE.2011.36.

(122) Parrt, T; Turgutlu, K. Rfpimp 1.3.4, Https://Github.Com/Parrt/Random-Forest-Importances.

(123) Machine, P.; With, L. Improve Machine Learning Results with Boosting , Bagging and Blending
Ensemble Methods in Weka Start and Practice Machine Learning With Weka. 2017, 1-12.

(124) Here, S.; Products, B.; Contact, A. Classification And Regression Trees for Machine Learning. 2017, 1-
11.

(125) Witman, M,; Ling, S.; Grant, D. M.; Walker, G. S.; Agarwal, S.; Stavila, V.; Allendorf, M. D. Extracting an
Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine
Learning. J. Phys. Chem. Lett. 2020, 11 (1),40-47. https:// doi.org/10.1021/acs.jpclett.9b02971.

(126) Sturluson, A.; Huynh, M. T; Kaija, A. R;; Laird, C.; Yoon, S.; Hou, F.; Feng, Z.; Wilmer, C. E.; Colén, Y.
J.; Chung, Y. G.; et al. The Role of Molecular Modelling and Simulation in the Discovery and
Deployment of Metal-Organic Frameworks for Gas Storage and Separation. Mol. Simul. 2019, 4S5 (14—
15),1082-1121. https://doi.org/10.1080/08927022.2019.1648809.

(127) Barthel, S.; Alexandrov, E. V; Proserpio, D. M.; Smit, B. Distinguishing Metal-Organic Frameworks.
2018. https://doi.org/10.1021/acs.cgd.7b01663.

(128) Altintas, C.; Avci, G.; Daglar, H.; Nemati Vesali Azar, A.; Erucar, 1; Velioglu, S.; Keskin, S. An Extensive
Comparative Analysis of Two MOF Databases: High-Throughput Screening of Computation-Ready
MOFs for CH 4 and H ; Adsorption. J. Mater. Chem. A 2019, 7 (16), 9593-9608.
https://doi.org/10.1039/C9TA01378D.

(129) Chen, T.; Manz, T. A. A Collection of Forcefield Precursors for Metal-Organic Frameworks. RSC Adv.

36



2019, 9 (63), 36492-36507. https://doi.org/10.1039/c9ra07327b.

(130) Ahmed, A.; Siegel, D.J. Machine Learning Models for Predicting Hydrogen Storage in Metal-Organic
Frameworks. Figshare. Software. Https://Doi.Org/10.6084/M9.Figshare.14173520.V1. 2021.
https://doi.org/10.6084/m9.figshare.14173520.

(131) Pinheiro, M.; Martin, R. L.; Rycroft, C. H.; Jones, A.; Iglesia, E.; Haranczyk, M. Characterization and
Comparison of Pore Landscapes in Crystalline Porous Materials. J. Mol. Graph. Model. 2013, 44, 208—
219. https://doi.org/10.1016/j.jmgm.2013.05.007.

(132) Pinheiro, M.; Martin, R. L.; Rycroft, C. H.; Haranczyk, M. High Accuracy Geometric Analysis of
Crystalline Porous Materials. CrystEngComm 2013, 15 (37), 7531-7538.
https://doi.org/10.1039/c3ce41057a.

(133) Ongari, D.; Boyd, P. G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate Characterization of
the Pore Volume in Microporous Crystalline Materials. 2017.
https://doi.org/10.1021/acs.langmuir.7b01682.

(134) Sarkisov, L.; Bueno-Perez, R.; Sutharson, M.; Fairen-jimenez, D. Material Informatics with PoreBlazer
v4.0 and CSD MOF Database. 2020. https://doi.org/10.26434/ CHEMRXIV.12923558.V1.

(135) Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu,
T.; Gémez-Gualdroén, D. A,; et al. Balancing Volumetric and Gravimetric Uptake in Highly Porous
Materials for Clean Energy. Science (80-. ). 2020, 368 (6488),297-303.
https://doi.org/10.1126/science.aaz8881.

(136) Camp, ]. S.; Stavila, V.; Allendorf, M. D.; Prendergast, D.; Haranczyk, M. Critical Factors in
Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks Critical Factors in
Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks. 2018.
https://doi.org/10.1021/acs.jpcc.8b04021.

(137) Churchard, A. J.; Banach, E.; Borgschulte, A.; Caputo, R.; Chen, J. C.; Clary, D.; Fijalkowski, K. J.;
Geerlings, H.; Genova, R. V.; Grochala, W.; et al. A Multifaceted Approach to Hydrogen Storage.
Physical Chemistry Chemical Physics. Royal Society of Chemistry October 14,2011, pp 16955-16972.
https://doi.org/10.1039/c1cp22312g.

(138) MacRae, C. F.; Sovago, L; Cottrell, S.J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields,
G.P,; Stevens, J. S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and
Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226-235. https://doi.org/10.1107/S1600576719014092.

(139) Manos, M. J.; Markoulides, M. S.; Malliakas, C. D.; Papaefstathiou, G. S.; Chronakis, N.; Kanatzidis, M.
G.; Trikalitis, P. N.; Tasiopoulos, A. J. A Highly Porous Interpenetrated Metal-Organic Framework from
the Use of a Novel Nanosized Organic Linker. Inorg. Chem. 2011, 50 (22), 11297-11299.
https://doi.org/10.1021/ic201919q.

(140) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q;
O’Keeffe, M.; Kim, J.; et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science (80-. ). 2010, 329
(5990), 424-428. https://doi.org/10.1126/science.1192160.

(141) Yuan, D.; Zhao, D.; Sun, D.; Zhou, H.-C. An Isoreticular Series of Metal-Organic Frameworks with
Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. Angew. Chemie Int. Ed.
2010, 49 (31), 5357-5361. https://doi.org/10.1002/anie.201001009.

(142) Yan,Y.; Telepeni, L; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A. J.; Lewis, W.; Walker, G. S.;
Allan, D. R;; et al. Metal-Organic Polyhedral Frameworks: High H2 Adsorption Capacities and Neutron
Powder Diffraction Studies. J. Am. Chem. Soc. 2010, 132 (12), 4092-4094.
https://doi.org/10.1021/ja1001407.

(143) Karagiaridi, O.; Bury, W.; Tylianakis, E.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Opening Metal-
Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through
Solvent-Assisted Linker Exchange. Chem. Mater. 2013, 25 (17), 3499-3503.
https://doi.org/10.1021/cm401724v.

37



(144) Zheng, X.; Huang, Y.; Duan, J.; Wang, C.; Wen, L.; Zhao, J.; Li, D. A Microporous Zn(II)-MOF with
Open Metal Sites: Structure and Selective Adsorption Properties. Dalt. Trans. 2014, 43 (22), 8311~
8317. https://doi.org/10.1039/c4dt00307a.

(14S) He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen Carriers. Nat. Rev. Mater. 2016, 1.
https://doi.org/10.1038 /natrevmats.2016.59.

(146) Li, G.; Kobayashi, H.; Taylor, J. M.; Ikeda, R.; Kubota, Y.; Kato, K; Takata, M.; Yamamoto, T.; Toh, S.;
Matsumura, S.; et al. Hydrogen Storage in Pd Nanocrystals Covered with a Metal-Organic Framework.
Nat. Mater. 2014 138 2014, 13 (8), 802-806. https://doi.org/10.1038 /nmat4030.

(147) Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen Storage: Recent Improvements and Industrial
Perspectives. Int. ]. Hydrogen Energy 2017, 42 (11), 7254-7262.
https://doi.org/10.1016/J.]JHYDENE.2016.03.178.

(148) Zhang, X.; Leng, Z.; Gao, M.; Hu, J.; Du, F.; Yao, J.; Pan, H.; Liu, Y. Enhanced Hydrogen Storage
Properties of MgH?2 Catalyzed with Carbon-Supported Nanocrystalline TiO2. J. Power Sources 2018,
398, 183-192. https://doi.org/10.1016/] JPOWSOUR.2018.07.072.

(149) Veenstra, M. Yang, J.; Siegel, D. J.; Ming Y. Ford/BASE-SE/UM Activities in Support of the Hydrogen
Storage Engineering Center of Excellence.
Https://Www.Hydrogen.Energy.Gov/Pdfs/Progress13/Iv_b_7 veenstra 2013.Pdf (Accessed 2020-
09-03), United States Dep.

(150) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen
Storage in Microporous Metal-Organic Frameworks. Science (80-. ). 2003, 300 (5622), 1127-1129.

(151) Song, C.; Wang, P.; Makse, H. A. A Phase Diagram for Jammed Matter. Nat. 2008 4537195 2008, 453
(7195), 629-632. https://doi.org/10.1038 /nature06981.

(152) Jaoshvili, A.; Esakia, A.; Porrati, M.; Chaikin, P. M. Experiments on the Random Packing of Tetrahedral
Dice. Phys. Rev. Lett. 2010, 104 (18), 185501.
https://doi.org/10.1103/PHYSREVLETT.104.185501/FIGURES/4/MEDIUM.

(153) Dutta, A.; Koh, K.; Wong-Foy, A. G.; Matzger, A. J. Porous Solids Arising from Synergistic and
Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation.
Angew. Chemie Int. Ed. 2018, 54 (13), 3983-3987. https://doi.org/10.1002/anie.20141173S.

(154) Cai,J.; Rao, X;; He, Y.; Yu,J.; Wu, C.; Zhou, W,; Yildirim, T.; Chen, B.; Qian, G. A Highly Porous NbO
Type Metal-Organic Framework Constructed from an Expanded Tetracarboxylate. Chem. Commun.
2014, 50 (13), 1552-1554. https://doi.org/10.1039/C3CC48747D.

(155) Schnobrich, J. K.; Lebel, O.; Cychosz, K. A.; Dailly, A.; Wong-Foy, A. G.; Matzger, A. J. Linker-Directed
Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. ]. Am.
Chem. Soc. 2010, 132 (39), 13941-13948. https://doi.org/10.1021/ja107423k.

(156) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and
Highly Porous Metal-Organic Framework. Nature 1999, 402 (6759), 276-279.
https://doi.org/10.1038/46248.

(157) DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-Economic
Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage. Energy and Fuels 2017,
31(2),2024-2032. https:// doi.org/10.1021/acs.energyfuels.6b02510.

(158) Rowsell, J. L. C.; Yaghi, O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angew.
Chemie Int. Ed. 2008, 44 (30), 4670-4679. https://doi.org/10.1002/anie.200462786.

(159) Koh, K; Van Oosterhout, J. D.; Roy, S.; Wong-Foy, A. G.; Matzger, A. J. Exceptional Surface Area from
Coordination Copolymers Derived from Two Linear Linkers of Differing Lengths. Chem. Sci. 2012, 3
(8),2429. https://doi.org/10.1039/c2sc20407j.

(160) Park, T. H.; Hickman, A. J.; Koh, K.; Martin, S.; Wong-Foy, A. G.; Sanford, M. S.; Matzger, A. J. Highly
Dispersed Palladium(II) in a Defective Metal-Organic Framework: Application to C-H Activation and
Functionalization. J. Am. Chem. Soc. 2011, 133 (50),20138-20141.

38



https://doi.org/10.1021/JA2094316/SUPPL_FILE/JA2094316_SI_001.PDF.

(161) Koh, K.; Wong-Foy, A. G.; Matzger, A. J. A Crystalline Mesoporous Coordination Copolymer with High
Microporosity. Angew. Chemie Int. Ed. 2008, 47 (4), 677-680.
https://doi.org/10.1002/ANIE.200705020.

(162) Chae, H. K,; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O.
M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004,
427 (6974), 523-527. https://doi.org/10.1038 /nature02311.

(163) Pang, M.; Cairns, A. J.; Liu, Y.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Highly Monodisperse M I1I-
Based Soc -MOFs (M = in and Ga) with Cubic and Truncated Cubic Morphologies. J. Am. Chem. Soc.
2012, 134 (32),13176-13179.
https://doi.org/10.1021/JA3049282/SUPPL_FILE/JA3049282_SI_001.PDF.

(164) Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology Design of
Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133 (39),
15506-15513. https://doi.org/10.1021/JA204233Q/SUPPL_FILE/JA204233Q_SI_001.PDF.

(165) The Choice Is Somewhat Arbitrary. There Is No Theory to Guide Optimal Selection of a Randomly
Packed Bimodal Distribution of Spheres Much Less Guidance for Cuboid Particles. However, the Use of
a Relatively Small Mass Frac-Tion of the Smaller Radius Parti.

(166) Mills, L. A.; Sinka, L. C. Effect of Particle Size and Density on the Die Fill of Powders. Eur. ]. Pharm.
Biopharm. 2013, 84 (3), 642-652. https://doi.org/10.1016/J.EJPB.2013.01.012.

(167) Zakhvatayeva, A.; Zhong, W.; Makroo, H. A.; Hare, C.; Wu, C. Y. An Experimental Study of Die Filling
of Pharmaceutical Powders Using a Rotary Die Filling System. Int. J. Pharm. 2018, 553 (1-2), 84-96.
https://doi.org/10.1016/J.]JPHARM.2018.09.067.

(168) Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.;
Iversen, B. B. Elucidating Negative Thermal Expansion in MOF-S. J. Phys. Chem. C 2010, 114 (39),
16181-16186. https://doi.org/10.1021/JP103212Z/SUPPL_FILE/JP103212Z SI 002.ZIP.

(169) Purewal, ].; Veenstra, M.; Tamburello, D.; Ahmed, A.; Matzger, A. J.; Wong-Foy, A. G.; Seth, S.; Liu, Y.;
Siegel, D. J. Estimation of System-Level Hydrogen Storage for Metal-Organic Frameworks with High
Volumetric Storage Density, in Press 2019) DOI: 10.1016/j.Ijhydene.2019.04.082. Int. J. Hydrogen
Energy 2019. https://doi.org/10.1016/].IJHYDENE.2019.04.082.

39



40



Appendix A
Additional information: Materials
Development

Alauddin Ahmed'and Donald J. Siegel"$*#*

*Mechanical Engineering Department, ‘Materials Science & Engineering, “Applied Physics Program, and *University of Michigan En-
ergy Institute, University of Michigan, Ann Arbor, MI 48109, United States

Section S1. Details of MOF database reported earlier.'

The database is publicly available at the HyMARC Data Hub®

Table S1. Database of MOF crystal structures, calculated crystallographic properties, and calculated usable H. capacities.

L Availablein  Zero accessible  H. capacity evalu- H. cap adt}f eval-
Source database surface area ated empirically uated with
GCMC
UM+CoRE+CSD17 15,235 2,950 12,285 12,799
Mail-Order MOFs 112 4 108 112
In Silico MOFs 2,816 154 2,662 466
In Silico Surface MOFs 8, 885 283 8,602 1,058
MOF-74 Analogs 61 0 61 61
ToBaCCo 13,512 214 13,298 2,854
Zr-MOFs 204 0 204 204
NW Hypothetical MOFs 137,000 30,160 106,840 20,156
UO Hypothetical MOFs 315,615 32,993 291,507 61,247
In-house syn.thesize'd via hy- 18 0 18 s
pothetical design
Total 493,458 66,758 426,700 98,962

Section S2 Literature review of machine learning for gas storage in MOFs> "
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Table S2. Summary of recent studies that use machine learning (ML) to predict gas adsorption in MOFs. perys, vf, gsa, vsa, pv, mpd,
Icd, pld represent single crystal density, void fraction, gravimetric surface area, volumetric surface area, pore volume, maximum pore
diameter, largest cavity diameter, and pore limiting diameter, respectively. R’, AUE, and RMSE represent the coefficient of determi-
nation, Average Unsigned Error, and Root-Mean-Square Error, respectively. AUC = Area Under the Curve. LASSO: Least Absolute
Shrinkage and Selection Operator; MLR: Multi-Linear Regression; SVM: Support Vector Machine; DT: Decision Tress; RF: Ran-
dom Forest; NN: Nearest Neighbors; GBM: Gradient Boosting Method; RBF: Radial Bias Function; PCA: Principal Component

Analysis; ANN: Artificial Neural Network.

Study Gas ML Features ML Method Properties Predicted Accuracy
UG at PS: R*=0.997;
AUE = 0.14 wt. %;
RMSE =0.18 wt. %
UV at PS: R*=0.984;
AUE=0.97g-H.LY;
. Extremely Randomized Deliverable H, storage capacity RMSE =140 g-H, L
This work H e 852, vs2, vE, pv, led, pld Trees between 5-100 bar at 77 K. UG at TPS: R* = 0.997;
AUE = 0.16 wt. %;
RMSE = 0.23 wt. %
UV at TPS: R*=0.967;
AUE=132g-H. LY
RMSE =1.92 g-H, L
Epsilon, temperature, pressure, .
i Total volumetric Ha for pres- B
?;Odle;;?n etal H, E:gc‘:’o;,::é :tidéele:i’l alc{:}?iﬁ Neural network sures 0.1, 1, 5, 35, 65, and 100 iEJE =075-293 g Ha
) bar at 77, 160, and 295 K
volume.
Hoa: Deliverable capacity 2 and 5 _
Bucior et al. H, CH Energetics of MOF-guest interac- Multilinear regression 100 bar at 77 K. 24_ ?]?61’(11\\/[;]5 B ;;‘.:
(2019)? v tions with LASSO CHa: Deliverable capacity be- 4'4 g/L, o
tween 5.8 and 65 bar at 298 K i
?Znodle;;m etal CO» Paysy v, gsa, vsa, mpd, lcd, topology II:IA;R&;?;};/L DT, RE, CO; capture R?>=0.601-0.934
)
Pays, v, gsa, vsa, mpd, led
Pardakhti et al interpenetration capacity, number DT, Poisson regression, ,_
(2017)¢ CH. of interpenetration framework, 19 SVM, and RF Totalat 35 barand 298 K RE=097
chemical descriptors
. Working capacity for the pres-
?Zg;l:]él)it al 882,/CH4 vf, gsa, led DT, SVM(RBF), sure swing between 1 and 10 AUC =0.889 t0 0.953
atm at 298 K
Fernandez & PCA, k-means clustering,
Barnard CO, N2 Pays, v, gsa, vsa, mpd, led archetypal analysis, DT, Total at 0.1 and 0.9 bar at 298 K ~94%
(2016)° SVM, MLL, ANN, RF
Ohno & Mukae Parysy v, gsa, vsa, mpd, and led GP regression, SVM re- 5
(2016)° CH.4 gression, NN, and LR Total at 35 bar and 298K. R*=0.79
RMSE =2.21 for 15,000
Simon e al. Paysy Vi, vsa, mpd, dpd, surface den- .. unitless numbers be-
(2015)® Xe/Ke sity, Voronoi energy RE Xe/Kr selectivity tween 0 and 35
R? not Reported
Sezginel et al. Paysy v, gsa, vsa, mpd, and Icd, pld, . Total at 298 K and pressures in .
(2015)" CH.4 Qu MVL regression 1 to 65 bar R*=0.3-09
fze(r)rllzr)ulioez etal COx AP-RDF SVM classification ;otal atP =015 & I barat298 94.5% (classification)
Fernandez et al. CH,4, CO», PCA, MLR, and SVM Total at low pressure (0.1-0.9 o o
(2013)1 N, AP-RDF regression bar) at 298 K 70%- ~83%
~90% at 1 bar (classifica-
Fernandez et al. cH Pays, v, gsa, vsa, mpd, led DT, MLR, and SVM re- Uptake at 1, 35, and 100 bar at tion);R? (regression) =
4

(2013)"

gression

298 K

0.85 (3Sbar);R* (regres-
sion) =0.93 (100 bar)
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Section $3 Grand Canonical Monte Carlo (GCMC) calculations

The pseudo-Feynman-Hibbs interatomic potential parameters of Fischer et al."*"'® were used to model H. molecules. MOF-H. interactions
were calculated using Lorentz-Berthelot'”'® combination rules. MOFs were assumed to be rigid and were described using interatomic potential
parameters from a generic'*?’ force field. The RASPA package was used to evaluate H, uptake via Grand Canonical Monte Carlo (GCMC). All
calculations were carried out using a 12 A cut-off radius with compensating long-range corrections.”* GCMC calculations for a given T,P
condition were performed using 1000 initial cycles followed by a 1000 cycle production run. Each cycle consisted of translation, insertion, and
deletion moves with equal probabilities.” Further details can be found in our recent publication.'

43



Section $4 Benchmarking with experimental data

GCMC calculated gravimetric capacity (wt.%)
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Figure S1. Comparison between experiments and GCMC calculations of H capacities for a benchmark set of open-metal-site MOFs for pressure
swing operation: HKUST-1 (M), NOTT-112 (4), Cu-MOF-74 (@), NU-125 (A ), NU-100/PCN-610 ().
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Figure S2. Distribution of 6 crystallographic features in 3 different datasets used in this study. (a) pore volume, (b) single crystal
density, (c) void fraction, (d) gravimetric surface area, () volumetric surface area, and (f) largest cavity diameter.
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Section S5 Description of crystallographic features

Skew and kurtosis were calculated using the scipy.stats module in the SciPy package.”*” Skewness is calculated from the ratio of the third

moment (m3;) and the cube of the square root of second moment (m.) of a feature variable, skew = u;/ ug/ % where W =
n —\7 —

(Z samples (x (k] — x)‘) /Msampies is the i-th central moment, and X is the mean of the feature variable.”**’ Kurtosis is the fourth central

k=1
moment divided by the square of the second moment: kurtosis = pi,/p3. >

Table S3. H. storage capacities for a benchmark set of open metal site (OMS) MOFs. Calculated capacities were predicted using the
pseudo-Feynman-Hibbs interatomic potential. Measured H. storage data was compiled from Garcia-Holley et al.** and from earlier
work performed by the present authors.' ‘Expt.’ refers to measured capacities from the literature, ‘GCMC’ refers to predictions from

the present study.
OMS den- Usable gravimetric capacity Usable volumetric capacity
CSD Ref- Gommon sity PS conditions PS conditions
code name A3 (wt. %) (g-H.L")
Expt."® GCMC Expt." GCMC

FQIQCEN  HKUST-1 2.63x10° 2.0 2.1 17 20.6
FOPFAS NOTT-112 9.24x10* 5.3 3.6 24 24.3
LENKIA Cu-MOEF-74 491x 103 1.0 1.1 13 14.8
REWNEO NU-12§ 1.09 x 10° 4.1 4.1 24 27.2
HABQUY NU-100/

4.47 x 10* 10.1 10.8 35.5 37.1

/GAGZEV  PCN-610
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Table $4. Statistics for the datasets used in this study.

Feature  Datasettype ~ Minimum Maximum  Mean Median :’fwezero val- Skew  Kurtosis

Training 0.03 5.18 0.76 0.62 0 1.84 5.64
(g c(11n‘3) Test 0.03 3.97 0.76 0.61 0 1.79 4.96
Unseen 0.04 4.7 0.84 0.76 0 1.37 3.81

Training 0 9750 3112.01 3516 10 -0.16 -0.80

(rfzs;ll) Test 0 9701 3137.82 3560 10 -0.16 -0.74

Unseen 0 9671 2530.47 2529 13 0.16 -0.84
Training 0 3995 1696.35 1912 10 -1.03 0.23
(m2V 2;73) Test 0 3966 1703.42 1918 10 104 026
Unseen 0 3482 1473.48 1736 13 -1.10 0.01
Training 0 0.99 0.71 0.76 0 -1.38 2.19
vf Test 0.01 0.99 0.71 0.76 0 -1.37 2.18
Unseen 0 0.98 0.69 0.71 0 -0.70 0.34

Training 0 35.73 1.34 1.23 0 6.97 91.45

(c rfl’;’g_l) Test 0.01 29.82 1.37 1.24 0 729 89.60

Unseen 0 24.76 1.18 0.93 0 3.22 30.16

Training 0.4 71.6 10.14 9.2 0 2.45 11.94

écAd) Test 0.4 66.2 10.21 9.3 0 249 1195
Unseen 0.4 69.9 10.41 9.4 0 1.27 3.61

Training 0 71.5 7.86 7.5 0 2.81 19.54

?}’S Test 0.1 57.7 7.91 7.6 0 284 1843
Unseen 0 68 7.45 6.9 0 1.21 5.39

46



Section $6 Machine learning work-flow

ML algorithm (M) selection &
hyper parameter (P) initialization
M( Xy Pinie)

Hyper

; Disjoint data split 10-fold
idati Optimization (Po)

Training data |:>
Divain = (tcains Yerain)
Final set of hyperparameter Py final l
Test data “ Deployable ML model
test = (Xtests Yeest) 3 Performance evaluation Feest = M( Xeests Popsfinal)

Figure S3. Machine learning work-flow as described in the text.

Input Feature set:

X={d, pv, gsa, Data set

MOF Dataset vsa, vf, Icd, pld} A
R partitioning
(7100 K) with  [— Datsse: '°;)M"
=(x [ —
known H, storage Output Target: ,

SELEE v - UG@Ps, uv@rs,
UG@TPS, UV@TPS

Train ML model
Ferain = M(Xerains Popt)

Section $7 Metrics for ML accuracy

The coefficient of determination (R?), average unsigned error (AUE), root-mean-squared error (RMSE), and median absolute error (MAE)
are used to assess the accuracy of the various ML models with respect to GCMC calculations. If the test/training set contains Mggmpies and
Yigeme is the GCMC calculated H; capacity of i-th sample and ¥; ,,; is the corresponding ML model prediction, then R?, AUE, RMSE, and
MAE are defined as follows:

R? (y Y, ) = E:l:fmples(yi.gcmc_Yi,ml)2 (l)
gcmer Yml E?:;lmples(yigcmc—m)p
E?Samples—llyigcmc_”mll
AUE(ygcmc; ym,) = —i=0 ~ . , (2)
samples
" - 2
E'_samples 1(y" - l)
RMSE(ygcmc; yml) = i=0 - igcme—Yim ] (3)
samples
MAE(ygcmc' yml) = medl'an(b’l,gcmc - yl,ml|, oy |yn.gcmc — yn,mll) (4)
_ n .
where. yg cme = (Zi:;mp . Yy i,gcmc)/ nsamples.

25-27 29-31

Kendal 7 rank correlation coefficients were calculated using the scipy.stats module****” according to the definition of Kendall 7-b.
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Section S8 Training set sizes

Table SS. Training set sizes.

100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,300,400,500,600,700,800,900,1000, 1200, 1300,1400,1500,1600,1700,
1800,1900,2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,13000,14000,15000,16000,17000,18000,19000,
20000,21000,22000,23000,24000,25000,26000,27000,28000,29000,30000,3 1000,32000,33000,34000,35000,36000,37000,
38000,39000,40000,41000,42000,43000,44000,45000,46000,47000,48000,49000,50000,51000,52000,53000,54000,55000,
56000,57000,58000,59000,60000,61000,62000,63000,64000,65000,66000,67000,68000,69000,70000,71000,72000,73000,74000

Section S9 Performance comparison for ML algorithms

Table S6. Performance of ML models in predicting usable gravimetric capacities under pressure swing conditions. R’, AUE, RSME, and MAE
represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model Model abbreviation Feature scaling method R p ":f;) (an:diﬁ Kendal © EV MAE
Ada Boost AB unscaled 0975  0.476 0.332 0910 0.976 0.410
Bagging with Decision Tree B/DT unscaled 0.997 0.141 0.037 0.959 0.997 0.110
Bagging with Random Forest B/RF unscaled 0.997 0.141 0.037 0.959 0.997 0.110
Boosted Decision Trees BDT unscaled 0997 0.136 0.037 0963  0.997 0.100
Decision Trees DT unscaled 0.995 0.180 0.065 0949 0995 0.100
Extremely Randomized Trees ERT unscaled 0.997  0.136 0.034 0.961  0.997 0.104
Gradient Boosting GB unscaled 0.997  0.158 0.045 0955  0.997 0.123
K-Nearest Neighbors K-NN unscaled 0983 0.346 0.226 0.900 0983 0.260
Linear Regression LR unscaled 0.987  0.307 0.170 0915  0.987 0.241
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0.986  0.235 0.187 0.958  0.987 0.173
Random Forest RF unscaled 0.997  0.141 0.037 0959  0.997 0.110
Ridge Regression RR unscaled 0.987 0307 0.170 0915 0987 0.241
Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0.986 0236 0.187 0.958  0.987 0.174
Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0.986  0.306 0.187 0.920  0.986 0.224
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Table S7. Performance of ML models in predicting usable volumetric capacities under pressure swing condition. R>, AUE, RSME, and MAE
represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model Model abbreviation Feature scaling method R « f:z i,) (g]fxfi y  Kendalz EV MAE
Ada Boost AB unscaled 0936 2258 7732 0873 0938 1983
Bagging with Decision Tree B/DT unscaled 0982 1011 2133 0918 0982 0720
Bagging with Random Forest B/RF unscaled 0983 0997 2,048 0919 0983 0710
Boosted Decision Trees BDT unscaled 0983 0979 2104 0922 0983 0.700
Decision Trees DT unscaled 0971 1298 3.568 0.895 0.971 0.900
Extremely Randomized Trees ERT unscaled 0984 0967 1.960 0922 0984 0692
Gradient Boosting GB unscaled 0.980 1.104 2454 0911 0980 0.829
K-Nearest Neighbors K-NN unscaled 0913 2378 10517 0794 0913 1760
Linear Regression LR unscaled 0917 2403 10.045 0.829 0917 1.981
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0949 1.899 6137 0858 0951 1.549
Random Forest RF unscaled 0982 1011 2156 0918 0982 0.720
Ridge Regression RR unscaled 0917 2404 10,046 0829 0917 1.980
Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0951 1.836 5957 0863 0954 1468
Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0910 2398 10.905 0.846 0913 1.902

Table S8. Performance of ML models in predicting usable gravimetric capacities under temperature+pressure swing condition. R?>, AUE,
RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error,
respectively.

ML model Model abbreviation Feature scaling method R ( :::J;) (Rwltiif) Kendal 7 EV MAE
Ada Boost AB unscaled 0970 0.557 0497 0939 0970 0459
Bagging with Decision Tree B/DT unscaled 0997 0172 0055 0962 0997 0130
Bagging with Random Forest B/RF unscaled 0997 0171 0054 0961 0997 0130
Boosted Decision Trees BDT unscaled 0997 0165 0051 0963 0997 0127
Decision Trees DT unscaled 0.994 0223 0.095 0951 0994 0.200
Extremely Randomized Trees ERT unscaled 0997 0163 0.053 0.966 0997 0.100
Gradient Boosting GB unscaled 099 0.199 0.068 0956 0996 0.158
K-Nearest Neighbors K-NN unscaled 0993 0250 0117 0943 0993 0200
Linear Regression LR unscaled 0992 0266 0.131 0947 0992 0208
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0991 0285 0155 0952 0991 0217
Random Forest RF unscaled 0.997 0173 0.056 0.961 0.997 0.130
Ridge Regression RR unscaled 0992 0266 0.131 0947 0992 0208
Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0991 0283 0155 0952 0991 0215
Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0968 0451 0.535 0948 0973 0345

Table $9. Performance of ML models in predicting usable volumetric capacities under temperature+pressure swing condition. R?>, AUE,
RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error,
respectively.

AUE RMSE

ML model Model abbreviation Feature scaling method R (ot 56) e Kendal 7 EV MAE
Ada Boost AB unscaled 0911 2387 9.954 0752 0912 1877
Bagging with Decision Tree B/DT unscaled 0963 1381 4147 0.809 0963 0940
Bagging with Random Forest B/RF unscaled 0964 1380 4042 0.809 0964 0940
Boosted Decision Trees BDT unscaled 0965 1322 3.887 0819 0965 0900
Decision Trees DT unscaled 0.936 1812 7.150 0755 0936 1200
Extremely Randomized Trees ERT unscaled 0.967 1320 3.700 0.819 0967 0912
Gradient Boosting GB unscaled 0955 1572 4953 0785 0955 L126
K-Nearest Neighbors K-NN unscaled 0926 2036 8202 0710 0926 1460
Linear Regression LR unscaled 0913 2048 9.691 0764 0913 1329
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0913 2,033 9.656 0.767 0915 1310
Random Forest RF unscaled 0.963 1383 4169 0.809 0963 0.940
Ridge Regression RR unscaled 0913 2049 9.692 0764 0913 1331
Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0913 2,029 9.641 0.768 0915 1307
Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0907 2117 10.404 0.767 0911 1.390
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Figure S4. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H; ca-
pacities in MOFs. Data is collected under TPS conditions on a test set of 24,674 MOFs. Different colors represent different categories of
MOFs. Top (a-c) and bottom (d-f) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (a, d): Agree-
ment between ML and GCMC predictions. (b, e): Difference between ML and GCMC as a function of GCMC capacity. (¢, f) Distribution
of differences in predictions between ML and GCMC.

Section S10 Performance of ML models under TPS conditions
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Figure SS. Difference between ML and GCMC as a function of GCMC capacity for the training set of 74,201 MOFs. Performance of the
Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H» capacities in MOFs. Data is col-
lected under PS (a, c) and TPS (b,d). Different colors represent different categories of MOFs. Top (a, b) and bottom (c,d) panels illustrate
performance for usable gravimetric and volumetric capacities, respectively.

Section S11 Difference between ML and GCMC as a function of GCMC capacity for the
training set
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Section S12 Effect of training set size on ML model accuracies

Table S10. Parameters of the power-law fit, e(m) = am® + y, where m is the size of the training dataset and € represents
the metric of accuracy (here average unsigned error or AUE). @, B, and y are the power-law coefficient, exponent, and con-
stant, respectively.

Condition f (scaling factor) a (coefficient) ¥ (constant)

UG-PS -0.43 1.19 0.13
UG-TPS -0.37 0.92 0.16
UV-PS -0.23 1.96 0.85
UV -TPS -0.16 2.10 1.04
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Figure S6. Performance of Extremely Randomized Trees ML models for predicting usable (a) gravimetric and (b) volumetric H, capacity as
a function of training set size (up to a dataset size of 10,000 MOFs) and the ratio of training to test set size. 100 different training sets ranging
in size between 100 and 74,021 MOFs were examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using
R? (left axis, black) and the average unsigned error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law
fit to the data.

Section 13 Univariate Feature Importance**
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Figure S7. Relative importance of seven features in predicting Ha storage in MOFs. Features are ranked 1(most important) through 7 (least
important). Four different methods were used: Pearson’s correlation coefficient (r), Breiman and Fried-man’s tree-based algorithm as im-
plemented in Scikit-learn, and the permutation importance method as implemented in rfpimp package. (a) usable gravimetric and (b) vol-
umetric capacities for PS conditions. (c) usable gravimetric and (d) volumetric capacities for TPS conditions.
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Section 14. GCMC verification of ML predictions

Table S11. MOFs predicted by ML to have high capacities under PS condition and whose performance was subsequently verified with
GCMC. Here NW and UO represent Northwestern University and University of Ottawa databases.

Usable volumet-
Density  Gravimetric Volumetric sur- Porevol- [, t P limit Usable gravi- He
rface area 2 Void frac- ume a‘rges - ore ‘1m1 __ metric capacity
Name Source su ¢ facearea (m tion B cavity di- ing diame- (wt. %) . L

(gem®) (m g") cm™) (cm g') ameter (A) ter(A) capacnt)l')(g- 2

GCMC ML GCMC ML

mof_7642 ToBaCCo 0.30 5561 1695 0.89 293 12.8 11.8 11.1 103 405 37.4

mof_7690 ToBaCCo 0.30 5718 1706 0.89 298 12.8 12.0 11.3 104 403 37.3

mof_7594 ToBaCCo 0.40 5070 2031 0.86 2.15 11.2 9.7 8.6 79 39.9 37.0

mof_7210 ToBaCCo 0.29 5936 1730 0.89 3.04 134 11.7 114 10.5 398 37.1

mof_7738 ToBaCCo 025 6054 1502 0.90 3.64 14.5 13.5 13.0 120 397 37.0

hypotheticaMOF_5045702_i_1_j_24 k_20_m_2 NW 031 5926 1820 0.88 2.87 16.0 11.0 109 101 397 372

str_m3_019_019_f0_nbo.sym.1l.out uo 0.31 5073 1583 0.90 2.88 17.7 12.9 10.8 10.1 397 37.1

hypotheticaMOF_5037315_i_1_j_ 20 k_12_m_1 NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 397 370

hypotheticaMOF_5037467_i_1_j_20_k_12_m_8 NW 031 5860 1800 0.88 2.85 16.0 11.0 109 100 397 370

str_m3_oS5_020_f0_nbo.sym.1l.out uo 0.39 4772 1882 0.87 222 14.1 9.6 8.7 8.1 39.7 37.2
hypothet-

ica MOF_5037563_i_1_j_20_k_12_m_13 NW 031 5897 1811 0.88 2.87 16.1 11.0 109 101 397 372
hypothet-

ica MOF_5038404_i_1_j 20 _k 20_m_15 NW 031 5870 1803 0.88 2.87 16.0 11.0 109 101 397 372

hypotheticaMOF_5037379_i_1_j_20_k_12_m_4 NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 396 370

hypotheticaMOF_5037407_i_1_j_20_k_12_m_$ NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 396 370

hypotheticaMOF_5037479_i_1_j_20_k_12_m_9 NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 396 370
hypothet-

ica MOF_5055561_i_1_j 28 k 20_m_11 NW 031 5874 1804 0.88 2.87 16.0 11.0 109 101 396 372

hypotheticaMOF_5037439_i_1_j_20 _k_12_m_7 NW 031 5858 1799 0.88 2.85 16.0 11.0 109 100 396 370
hypothet-

ica MOF_5037499 i_1_j 20 _k_12_m_10 NW 031 5854 1798 0.88 2.85 16.0 11.0 109 100 396 370
hypothet-

ica MOF_5037531_i_1_j 20 _k_12_m_11 NW 031 5818 1787 0.88 2.86 16.0 11.0 109 100 396 370
hypothet-

icaMOF 5037523 i 1 j 20 k 12 m 11 NW 0.31 5857 1799 0.88 2.86 16.0 11.0 109 100 396 371
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Figure S8. Comparison of GCMC calculations with ML predictions for the 21,700 highest-capacity MOFs predicted by ML for PS condi-
tions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a,
d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the

difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (¢, f) show the distribution of dif-
ferences from plots b and e.
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Table S12. MOFs predicted by ML to have high capacities under TPS condition and whose performance was subsequently verified
with GCMC. Here UO represents University of Ottawa database.

Usable gravi- Usable volumet-

. metric capac- ric
. Gravimetric Volumetric . Pore La‘r gesf Ifo‘re l"?" ity capacity
Name Source Densn_l;y surface area surface area Vm.d volume €2Vity di-  iting di- (wt. %) (g-H: L")
(gem 2 2 action 3 . ameter  ameter
(mg")  (mem®) (em'gh) (4 (A)
GCMC ML GCMC ML
str_ml_ol_oll f0_pcusym.102.0out  UO 0.45 4352 1974 0.84 1.84 129 10.1 104 97 S31 481
str_ml_ol_oll_f0_pcu.sym.117.out Uuo 0.47 4162 1977 0.83 1.74 12.8 9.9 9.9 9.0 528 48.0
str_ml_ol_oll_f0_pcu.sym.121.out Uuo 0.47 4263 2006 0.83 1.76 12.1 10.2 100 94 527 48.1
str_ml_ol_oll_f0_pcu.sym.13.out Uo 0.46 4326 2005 0.83 179 127 9.9 101 93 526 480
str_ml_ol_oll_f0_pcu.sym.159.out Uuo 0.58 3703 2138 0.80 1.38 10.4 8.6 8.3 7.6  52.6 48.5
str_ml_ol_oll_f0_pcu.sym.200.out Uuo 0.45 4359 1978 0.84 1.84 12.9 10.1 103 9.6 526 48.1
str_ml_ol_oll_f0_pcu.sym.212.out Uuo 0.60 3417 2035 0.83 1.39 12.0 10.1 8.1 75 828 48.1
str_ml_ol_oll_f0_pcu.sym.51.out Uuo 0.46 4330 2007 0.83 1.79 11.9 9.9 10.1 93 828 48.1
str_ml_ol_oll_f0_pcu.sym.71.out Uuo 0.45 4436 1980 0.84 1.87 13.0 10.9 104 9.7 525 48.1
str_ml_ol_oll_f0_pcu.sym.89.out Uuo 0.58 3507 2043 0.83 1.42 124 9.8 8.2 77 828 48.1
str_ml_ol_o17_f0_pcu.sym.l.out Uuo 0.46 4283 1985 0.83 1.79 11.9 9.9 10.1 94 828 483
str_ml_ol_o17_f0_pcu.sym.104.out Uuo 0.46 4439 2032 0.83 1.82 12.5 11.0 102 9.6 524 482
str_ml_ol_o17_f0_pcu.sym.129.out Uuo 0.60 3585 2187 0.83 1.37 14.6 9.2 7.9 7.6 523 482
str_ml_ol_o17_f0_pcu.sym.132.out Uuo 0.60 3438 2048 0.83 1.39 12.7 10.8 8.0 78 523 483
str_ml_ol_ol7_f0_pcu.sym.28.out Uuo 0.57 3732 2117 0.80 141 13.1 10.9 8.4 78 S22 48.1
str_ml_ol_o2_f0_pcu.sym.l.out Uo 0.56 3615 2011 0.83 1.49 13.1 108 85 79 522 484
str_ml_ol_o2_f0_pcu.sym.101.out Uuo 0.56 3549 1978 0.84 1.50 12.9 10.7 8.5 77 821 48.1
str_ml_ol_o2_f0_pcu.sym.11.out uo 0.44 4487 1986 0.84 1.89 124 10.3 104 9.7 520 482
str_ml_ol_o2_f0_pcu.sym.15.out Uuo 0.41 4983 2054 0.84 2.04 12.7 9.1 11.1 103 52.0 48.1
str_ml_ol_o2_f0_pcu.sym.2.out Uo 0.47 4179 1977 0.83 175 119 9.8 98 90 520 480
MOE-5 7.8 51.9
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Figure §9. Comparison of GCMC calculations with ML predictions for the 7,901 highest-capacity MOFs predicted by ML for TPS condi-
tions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a,
d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the
difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (¢, f) show the distribution of dif-
ferences from plots b and e.

Table S13. Differences between ML-predicated and GCMC-calculated H. storage capacities of unseen MOFs at PS and
TPS

conditions. Overprediction and underprediction mean ML predicted values are greater and smaller than those of GCMC
calculated actual values, respectively.

Temperature + pres-

Pressure swing .
sure swing
Statisti
ansHes UG ( Iilv L UG uv
(wt. %) 8 1)2 (wt. %) (g-H.L")
Largest overprediction 1.67 3.36 0.94 493
Largest underprediction -0.96 -4.46 -1.0 -6.59
Average unsigned error 0.24 0.66 0.24 1.28
Standard deviation 0.20 0.53 0.17 0.99
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Performance for 508 feature combinations

d = Single crystal density (g/cm?); pv = Pore volume (cm?/g); vf = void fraction; gsa = Gravimetric sur-
face area (m?/g); vsa = Volumetric surface area (m?/cm?); lcd = Largest cavity diameter (A); pld = Pore
limiting diameter (A)

Usable gravimetric H, capacity (wt.%)
under pressure swing (PS) between 100 and 5 bar at 77K

Combination of features Number of features R Average Unsigned Error, AUE (wt.%)  Root-Mean-Square_Error, RMISE (wt.%) Kendallz

P 1 0991 25
d 1 0981 037 0.48 o891
o 1 0971 039 061 0910
gsa 1 0798 090 152 0788
pld 1 o1 113 18 o7
ed 1 0719 132 186 05655
wa 1 0073 212 348 0314
d.pv 2 0995 019 026 0947
Vi, pv 2 099 019 027 0935
. 2 099 020 027 0943
pu, led 2 0992 024 032 0931
Py, pld 2 09% 026 035 0924
gsa,ov 2 0988 029 0.0 0914
d,Icd 2 0987 031 042 0.908
vsa, pu 2 0986 030 041 0911
dpid 2 0982 035 0.6 0894
gsa,vsa 2 0979 038 052 0886
d.gsa 2 0977 041 056 0882
gsa, 2 0976 038 056 0500
d,va 2 0975 041 056 0878
f, led 2 0973 037 058 0906
f,pld 2 0973 038 061 0905
vsa,uf 2 0966 043 066 0889
gsa,Icd 2 0954 047 076 0882
gsa,pld 2 907 069 107 0823
Ied, pld 2 0838 088 144 0
vsa, led 2 0812 097 154 0738
wsa, pld 2 0803 101 158 0731
dpy,led 3 099 018 024 0949
i, py led 3 0995 017 024 0948
sa, f, pv 3 0995 019 025 0945
853, v52, pv 3 0995 018 026 0947
.t led 3 0995 018 025 0948
dpv,pld 3 0995 020 026 0944
dg5,pv 3 0995 019 026 0944
gsa, v pv 3 0995 019 026 0935
d.v v 3 0995 019 026 0946
d,vsa, pv 3 0995 019 026 0944
d,g5a,vf 3 099 020 028 0942
gsa, vsa, vf 3 099 019 027 0945
v, py, pld 3 099 020 027 0941
d,vsa, vf 3 0994 020 028 0941
a1, pld 3 0994 020 027 0943
vsa, py, led 3 0993 021 030 0936
gsa, pu, led 3 0993 02 031 0935
P, lcd, pld 3 0993 02 031 0932
vsa, pv, pl 3 0991 025 034 0928
g3, pv,pld 3 0991 025 033 0927
gsa, vsa, Ied 3 0989 027 037 0920
g2, led 3 0988 026 038 0931
d,g53, led 3 0988 028 039 0917
dvsa, Ied 3 0987 029 0.0 0916
d,Icd, pid 3 0987 030 041 009
g3, v52, pld 3 0985 0x2 043 006
g2, f, pld. 3 0985 030 044 0916
dgsa, pld 3 0985 033 0.5 0903
d,vs2, pid 3 0984 033 0.5 0900
d,g5a, vsa 3 0977 038 052 0.886
gsa, Icd, pld 3 0975 033 055 0916
vsa, e 3 0970 0.40 062 0893
W, led, pld 3 0969 040 063 0893
vsa, v, pld 3 0967 042 065 0891
vsa, led, pld 3 0927 082 099 0835
d, 2, pu led 4 0997 016 021 0954
g2, v, pw led 4 0997 015 021 0955
w2, f, pw led 4 0997 015 021 0954
d, 852, py, Icd 4 0997 016 021 0955
Vs, v, py, pid 4 099 016 022 0953
g3, i, pv, pld 4 099 016 022 0953
d, pu, led, pld 4 099 016 021 0255
d,g5a, py, pld 4 099 017 022 0952
i, py lcd, pld 4 099 015 021 055
d,vsa, py, pld 4 099% 017 022 0950
d,g5a, v, lcd 4 099 016 022 0953
gsa, vsa, pw Ied 4 099 017 024 0950
d 1, v led 4 099% 017 023 0951
gsa, vsa, V, led 4 099 016 024 0953
dvsa, v, Ied 4 099 016 023 0953
gsa, vsa, f, pld 4 099 017 023 0952
g5, vs2, pv, pld 4 0995 018 024 0949
d,g53, v, pv 4 0995 018 025 0946
d,vsa, i, pld 4 0995 017 024 0951
g3, vsa, i, pv 4 0995 018 024 0947
dva, vl pv 4 0995 018 024 0946
d,gsa, vsa, pv 4 0995 018 025 0947
d, 852, v, pld 4 0995 018 025 0949
A1, led, pld 4 0995 016 026 0950
d, 1, pv, pld 4 0995 019 026 085
s, pv, led, pld. 4 0995 019 027 0944
dg5a, vsa, vf 4 099 019 026 0943
gsa, pv, Ied, pld. 4 099 020 027 0941
852, f, Icd, pld 4 0992 022 032 0943
852, v52, Icd, pld 4 0992 024 033 0929
d, 853, Icd, pld 4 0992 024 033 0932
d,vsa, Icd, pld 4 0991 024 033 0930
d,g5a, vsa, led 4 088 027 038 0919
d,g5a, vsa, pld 4 0985 0x 044 005
s, f Icd, pld 4 0976 036 056 0507
g3, v, pu Icd, pld s 0997 o014 019 0959
9, v, pv Icd, pld s 0997 015 020 0956
dgsa, v, py, Ied s 0997 015 020 0957
d, 853, py, Icd, pid 5 0997 015 020 0957
Vs, v, pv, Icd, pld 5 0997 o014 020 0957
d,vs2, i, pv led s 0997 015 020 0956
d, g5a, v, Icd, pld s 099 015 021 0957
d,g5a, vsa, py, cd s 099 016 021 0954
d,vsa, v, Ied, pld s 099 015 021 0956
d,vsa, py, Ied, pld s 099 015 021 0956
gsa, vsa, i, Ied, pld. s 099 015 022 0955
d, gsa, vsa, py, pld 5 099 017 022 0952
g3, vsa, VI, pu, led 5 099 015 021 0958
d,vsa, i, v, pld 5 099 015 021 0950
d, 852, vsa, , led s 099 016 022 0954
d, g5, v, py, pid s 099 016 022 0954
d,g5a, vsa, v, pid s 099 016 022 0952
g3, v52, f, pv, pld s 099 016 024 0953
g3, v5a, pv Icd, pld s 0995 017 023 0951
d,g5a, vsa, v, pv s 0995 018 025 0948
d, 853, vsa, cd, pld 5 0991 023 032 0932
d, 853, v, pv, Icd, pld 6 0997 o014 019 0959
d, 853, vsa, v, pv, Icd 6 0997 015 021 0957
853, v53, i, v, Ied, pld 6 0997 014 020 0958
d,g5a, vsa, py, lcd, pld 6 0997 015 020 0957
d,vsa, v, pu, lcd, pld 6 0997 o014 020 0959
d,gsa, vsa, v, Icd, pld 6 099 015 021 0956
d, g53, vsa, v, pv, pld 6 099 016 022 0954
d, 853, vsa, v, py, Ied, pld 7 0997 o1 019 0959
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Combination of features

vsa, led, pld
g5, vsa, led
pv, lcd, pld
d,gsa, led
d,vsa, led
vsa, py, pld
g5, pv, pld

4, led, pld
g5a, vsa, pld
d,gsa, pld

d, vsa, pld
d,gsa, vsa
gsa, v, Icd, pld
d, vsa, v, led
d, py, Icd, pld
v, pv, Icd, pld
d,vsa, py, led
d,gsa, Vf, Ied
vsa, Vi, pv, led
d,gsa, pv, led
vsa, i, Icd, pld
d,vf, Icd, pld
gsa, v, py, led
d,gsa, Vi, pld

d, gsa, pv, pld
d,vf, p, Ied

vsa, v, pv, pld

g5, vsa, p, Ied
d,vsa, Vi, pv

d,gsa, vsa, pv

gsa, vsa, py, pld

g5, vsa, Vf, pv
d,gsa, Vf, pv

d,vf, p, pld

d, gsa, vsa, vf

vsa, pv, led, pld

g5, vsa, lcd, pld
d,vsa, Ied, pld

d, gsa, Icd, pld

gsa, pv, Icd, pld

d, gsa, vsa, led

d, gsa, vsa, pld

vsa, v, pv, Icd, pld
d,g5a, v, Icd, pld
g5a, Vf, py, led, pld
852, vsa, Vf, Icd, pld
d, vsa, vi, py, led
d,vsa, v, led, pld

d, A, pv, lcd, pld

g5, vsa, Vf, pv, Ied

d, gsa, pv, Icd, pld

d, gsa, vsa, py, led
d,vsa, py, led, pld

d, gsa, Vi, pv, led

d, gsa, v, pv, pld

d, gsa, vsa, Vi, Ied

d, vsa, v, py, pld

g5, vsa, Vf, pv, pld

d, gsa, vsa, v, pld

d, gsa, vsa, py, pld
g5, vsa, py, Icd, pld
d,gsa, vsa, v, pv

d, gsa, vsa, lcd, pld

d, vsa, v, py, Icd, pld
g5, vsa, Vf, pv, lcd, pld
d,gsa, vsa, A, lcd, pld
d, gsa, vsa, A, pv, Icd
d, gsa, Vi, pv, lcd, pld
d, gsa, vsa, pv, Icd, pld
d, gsa, vsa, Vi, pv, pld
d,gsa, vsa, v, p, Icd, pld

Number of features
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Usable volumetric H, capacity (g/L)
under pressure swing (PS) beteween 100 and 5 bar at 77K

Average Unsigned Error, AUE (g/L)
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145
228
279
314
361
445
5.87
115
135
132
140
141
145
165
208
225
226
228
248
251
248
267
267
292
285
290
2.90
317
123
127
123
124
127
133
134
131
125
133
140
134
141
136
143
142
137
139
142
142
172
1.80
181
186
186
186
192
193
203
204
211
218
223
225
27
1.07
110
115
110
118
112
110
118
111
111
113
117
117
118
114
118
122
122
120
119
127
130
134
131
129
131
136
135
146
158
159
160
163
190
219
1.00
101
103
104
104
1.02
104
108
110
114
110
108
112
111
113
116
114
123
127
125
156
1.00
101
104
1.06
1.03
111
113
099

Root-Mean-Square_Error, RMSE (g/L)
2.05
3.09
3.78
4.09
4.74
5.90
757
1.65
1.84
1.88
2.01
200
2.10
233
2.82
3.09
308
3.10
3.41
3.45
347
359
3.64
3.90
3.91
3.98
405
432
172
173
177
182
1.83
1.86
1.88
187
189
191
1.92
1.96
1.96
195
1.98
2.00
1.99
2.00
202
2.04
235
245
245
253
253
2.57
2.64
263
274
2.83
2.90
293
301
3.03
371
1.54
1.58
160
1.59
1.63
1.63
1.63
164
1.63
1.66
1.66
167
167
170
1.70
1.70
171
173
174
175
177
1.83
186
1.86
1.85
1.88
192
196
1.98
2.14
217
220
228
2.58
295
145
146
148
1.50
1.48
1.50
151
154
1.54
157
1.56
157
1.59
1.61
1.63
1.67
167
174
1.80
178
211
146
147
1.50
1.52
151
158
1.63
143
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Usable gravimetric H, capacity (wt.%) under

] swing (TPS) 100bar
Combination of features Number of features R Average Unsigned Error, AUE (wt.%) Root-Mean-Square_Error, RMSE (wt.%) KendallT
pv 1 0.993 026 034
d 1 0.986 036 047
v 1 0950 059 0388
gsa 1 0.883 078 131
pld 1 0751 135 1.99
Icd 1 0682 169 228
vsa 1 0.169 2.26 365
d, pv 2 0994 023 031
W, pv 2 0.993 023 032
gsa, pv 2 0.993 025 033
d vf 2 0.993 024 033
vsa, pv 2 0.993 025 033
pv, led 2 0.993 025 035
pv, pld 2 0.992 027 036
d, gsa 2 0.990 031 040
d, vsa 2 0990 030 041
d, led 2 0.989 032 043
d, pld 2 0.987 034 045
gsa, vsa 2 0.987 032 046
gsa, vf 2 0972 045 067
gsa, led 2 0.967 0.48 073
W, led 2 0957 058 084
Vi, pld 2 0956 058 085
gsa, pld 2 0952 060 090
vsa, vf 2 0941 067 096
vsa, pld 2 0.844 108 158
Icd, pld 2 0.824 113 166
vsa, led 2 0.819 117 170
d, gsa, pv 3 0.995 021 029
gsa, vsa, pv 3 0.995 021 028
gsa, pv, pld 3 0.995 021 028
d, vsa, pv 3 0.995 022 029
gsa, Vi, pv 3 0.995 021 029
vsa, py, led 3 0995 021 030
gsa, pv, led 3 0.994 0.22 030
vsa, v, pv 3 0994 022 031
d, py, led 3 0994 022 030
d, gsa, vf 3 0.994 023 030
vsa, pv, pld 3 0994 022 030
gsa, vsa, vf 3 0.994 022 031
Wi, py, Icd 3 0.994 022 030
d, Vi, pv 3 0.994 023 031
d, Vi, led 3 0.994 022 031
pv, lcd, pld 3 0994 023 032
d, vsa, vf 3 0.994 023 031
d, gsa, led 3 0.993 026 035
d, py, pld 3 0.993 025 034
d, vsa, pld 3 0993 026 035
d, gsa, pld 3 0.993 0.26 034
Wi, py, pld 3 0.993 025 035
d, vf, pld 3 0992 025 034
gsa, vsa, pld 3 0.992 026 036
d, vsa, led 3 0992 026 036
gsa, vsa, lcd 3 0992 026 036
d, gsa, vsa 3 0.990 029 039
d, lcd, pld 3 0.988 032 043
gsa, vf, pld 3 0.986 035 049
gsa, lcd, pld 3 0.984 035 051
gsa, Vf, led 3 0.983 034 051
WA, led, pld 3 0.954 0.60 087
vsa, Vi, pld 3 0950 062 090
vsa, Vf, led 3 0.949 062 089
vsa, led, pld 3 0.905 083 123
gsa, Vi, pv, Icd 4 0.996 018 025
d, gsa, pv, led 4 099 018 025
d, vsa, py, led 4 0.996 0.19 026
gsa, vsa, pv, led 4 0.996 020 026
vsa, Vf, py, pld 4 099 019 026
d, vsa, py, pld 4 0.996 020 026
vsa, v, py, led 4 0.996 0.19 026
Vi, py, Icd, pld 4 0.99 019 026
gsa, pv, Icd, pld 4 0.996 020 027
gsa, vsa, Vi, pv 4 0.996 020 027
d, gsa, vf, pld 4 0.9 020 027
d, gsa, Vf, led 4 0.995 0.19 027
d, vsa, VA, led 4 0.995 0.19 027
d, vsa, Vi, pld 4 0.995 0.20 027
d, gsa, py, pld 4 0.995 0.19 027
gsa, vsa, py, pld 4 0995 020 027
d, py, Icd, pld 4 0.995 0.19 028
vsa, pv, lcd, pld 4 0.995 020 027
gsa, Vi, py, pld 4 0995 019 027
d, vsa, vf, pv 4 0.995 021 028
d, gsa, vsa, pv 4 0.995 021 028
gsa, vsa, Vf, Icd 4 0.995 020 028
d, Vi, py, Icd 4 0.995 021 028
d, Vi, lcd, pld 4 0.995 020 028
gsa, vsa, Vi, pld 4 0.995 020 029
d, gsa, vf, pv 4 0.994 021 030
d, gsa, vsa, vf 4 0.994 022 030
d, vsa, led, pld 4 0.994 0.24 032
d, gsa, lcd, pld 4 0.994 023 031
d, Vi, py, pld 4 0.993 025 033
d, gsa, vsa, pld 4 0.993 025 033
gsa, vsa, led, pld 4 0.993 024 034
d, gsa, vsa, Ied 4 0992 025 035
gsa, Vi, lcd, pld 4 0.990 029 041
vsa, A, led, pld 4 0.960 056 079
gsa, vf, pv, lcd, pld 5 0.997 018 024
d, vsa, pv, lcd, pld 5 0.996 018 024
d, gsa, Vi, lcd, pld 5 0.996 018 025
d, gsa, pv, lcd, pld 5 0.9 018 025
d, gsa, vf, pv, Icd 5 0.996 018 025
gsa, vsa, v, py, led 5 0.996 018 025
d, gsa, vf, py, pld 5 0.9 0.19 025
gsa, vsa, i, py, pld 5 0996 019 026
d, vsa, vf, py, pld 5 0.99 0.19 025
d, gsa, vsa, py, led 5 0.99 0.19 026
d, Vi, py, Icd, pld 5 0.996 0.19 026
d, vsa, VA, Icd, pld 5 099 018 025
gsa, vsa, pv, lcd, pld 5 0.996 0.19 026
d, vsa, v, py, led 5 0.996 018 026
d, gsa, vsa, pv, pld 5 099 019 026
d, gsa, vsa, i, lcd 5 0.996 0.19 026
d, gsa, vsa, v, pld 5 0.996 020 027
gsa, vsa, Vi, lcd, pld 5 0.995 019 026
d, gsa, vsa, Vi, pv 5 0.995 021 028
vsa, vf, py, lcd, pld 5 0.995 018 028
d, gsa, vsa, Icd, pld 5 0.994 023 031
d, gsa, vsa, v, py, led 6 0.996 018 024
d, vsa, Vi, py, Icd, pld 6 0.99% 0.18 024
d, gsa, vf, py, lcd, pld 6 0.99 017 025
d, gsa, vsa, pv, lcd, pld 6 0.996 018 024
d, gsa, vsa, Vi, py, pld 6 0.996 0.19 025
d, gsa, vsa, Wi, lcd, pld 6 0.99 0.8 025
gsa, vsa, v, py, lcd, pld 6 0.996 018 027
d, gsa, vsa, vf, pv, lcd, pld 7 0997 017 024
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Combination of features

gsa, vsa, pv
vsa, pv, pld
d, vi, pld

Vi, pv, pld
gsa, vf, pld
vsa, py, led
d, gsa, vi

d, vsa, vf
gsa, py, pld
vsa, led, pld
gs2, vsa, ld
gsa, py, led
d, vsa, pld
gsa, vsa, pld
d, gsa, pld
d, vsa, led
d, gsa, Ied
gsa, Icd, pld
pv, led, pld

gsa, vsa, Vi, pld
gsa, vsa, v, led
vsa, Vf, py, led
d, vsa, i, led

vsa, Vf, Icd, pld
gsa, v, lcd, pld
A, v, Icd, pld
d, vsa, Vi, pld

d, vsa, i, pv

d, gsa, Vi, pv
gsa, Vi, py, pld
d, v, lcd, pld
gs3, vsa, i, pv
d, vi, py, Icd

d, gsa, vsa, pv
gsa, vsa, py, pld
gsa, vsa, py, Ied
d, vf, pv, pld

d, vsa, led, pld
vsa, py, lcd, pld
gs3, py, Icd, pld

vsa, Vf, pv, lcd, pld

d, gsa, vi, py, Icd

d, vf, pv, Icd, pld

d, gsa, pv, lcd, pld
gsa, VT, py, Icd, pld

d, vsa, Vi, pv, Icd

d, gsa, Vf, Icd, pld

d, vsa, Vi, Icd, pld

d, vsa, py, lcd, pld

d, gsa, vf, pv, pld

gs3, vsa, v, pv, led

d, vsa, Vi, pv, pld

gsa, vsa, Vi, led, pld

d, gsa, vsa, vf, pld

d, gsa, vsa, pv, led
gsa, vsa, i, pv, pld

d, gsa, vsa, pv, pld

d, gsa, vsa, Vi, Icd

d, gsa, vsa, vf, pv

gsa, vsa, py, Icd, pld

d, gsa, vsa, Icd, pld

d, gsa, vf, py, led, pld
d, gsa, vsa, f, lcd, pld
d, vsa, v, py, lcd, pld
d, gsa, vsa, vf, py, Icd
gs3, vsa, Vi, py, lcd, pld
d, gsa, vsa, py, Icd, pld
d, gsa, vsa, vf, py, pld
d, gsa, vsa, VI, py, Icd, pld

Number of features
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under

Usable volumetric H, capacity (g/L)

P swing (TPS) b

Average Unsigned Error, AUE (g/L)
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100bar

Root-Mean-Square_Error, RMSE (g/L)
325
3.78
431
455
480
4.89
5.86
265
283
2.80
290
302
321
338
3.40
346
357
3.61
3.66
375
3.69
3.67
370
3.88
4.07
424
422
439
258
254
259
267
267
261
2.66
267
261
27
275
274
282
281
284
2.90
287
285
293
301
3.00
3.07
EEHY
3.04
312
3.09
321
315
332
333
328
331
3.63
376
3.98
229
229
231
234
231
231
236
234
234
234
235
237
240
236
244
238
241
246
248
245
243
245
244
247
261
269
27
289
290
295
299
3.04
297
323
326
210
219
219
212
215
218
218
218
222
224
220
223
229
242
238
242
237
246
245
263
294
204
212
212
212
215
214
229
206
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SI 1. MOEF-$ cubic morphology size-controlled crystal synthesis and activation procedures
The optimized different metal/ligand molar ratio (3.8:1,2.3:1, 1.7:1, and 1.7: 1(twofold dilution)) were heated

at 100 °C for 24 h, which resulted in four different crystal size distributions (MOF-5(2349), MOF-5(1500),
MOF-5(808), and MOF-5(279)) of MOF-S$ (see below for synthetic procedures) respectively.

O OH Zn(NO3)26H20
>_< >_< »  Zn,O(BDC);
HO o) DEF, A

MOF-5
H,BDC

Scheme S1. Synthetic process for MOF-5

MOF-5(2349): H,BDC (100.0 mg, 0.602 mmol), Zn(NO3),.6H,O (680.0 mg, 2.286 mmol), and 10 mL of DEF
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with
DMEF three times (3 x 20 mL) over 24h. The crystals were immersed in CH,Cl, for 3 days, during which time the
CH,Cl, was replaced three times (3 x 20 mL). Once solvent exchange was complete, the crystals were isolated by
decanting the CH,Cl, and evacuating under dynamic vacuum (0.0S torr) for 24 h at room temperature.

MOF-5(1500): H,BDC (100.0 mg, 0.602 mmol), Zn(NO3),.6H,O (400.0 mg, 1.345 mmol), and 10 mL of DEF
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with
DMEF three times (3 x 20 mL) over 24h. The crystals were immersed in CH,Cl, for 3 days, during which time the
CH,Cl, was replaced three times (3 x 20 mL). Once solvent exchange was complete, the crystals were isolated by
decanting the CH,Cl, and evacuating under dynamic vacuum (0.0S torr) for 24 h at room temperature.

MOF-5(808): H,BDC (50.0 mg, 0.301 mmol), Zn(NO3),.6H,0O (150.0 mg, 0.504 mmol), and 10 mL of DEF
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with
DMEF three times (3 x 20 mL) over 24h. The crystals were immersed in CH,Cl, for 3 days, during which time the
CH,Cl, was replaced three times (3 x 20 mL). Once solvent exchange was complete, the crystals were isolated by
decanting the CH,Cl, and evacuating under dynamic vacuum (0.0S torr) for 24 h at room temperature.

MOF-5(279): H,BDC (25.0 mg, 0.151 mmol), Zn(NO3),.6H,O (75.0 mg, 0.252 mmol), and 10 mL of DEF
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with
DMEF three times (3 x 20 mL) over 24h. The crystals were immersed in CH,Cl, for 3 days, during which time the
CH,Cl, was replaced three times (3 x 20 mL). Once solvent exchange was complete, the crystals were isolated by
decanting the CH,Cl, and evacuating under dynamic vacuum (0.0S torr) for 24 h at room temperature.

SI2. MOEF-S new morphologies synthesis and activation procedures
It was found that introducing a polycarboxylate (See Figure S1) to the initial MOF-S reaction mixture generates
different shaped (octahedral, cuboctahedral, and spherical) crystals in 24 or 48 hours (Scheme S2).
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Figure S1. Molecular structures of polycarboxylate linkers studied. oxalic acid (a), malonic acid (b), succinic acid
(¢), glutaric acid (d), adipic acid (e), suberic acid (f), trimesic acid (g), [1,1'-biphenyl]-3,4',5-tricarboxylic acid
(h), 1,3,5-tris(4-carboxyphenyl )benzene (H;BTB) (i), 2,4,6-tris(4-carboxyphenyl)aniline (NH,-H;BTB) (j), S'-
((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid (k), and $'-(4-carboxyphenyl)-
[1,1:3',1"-terphenyl]-3,4",5-tricarboxylic acid (1).

Ditopic carboxylic acid (H,L) linkers:

Introducing ditopic carboxylic acids (see Figure S1(a-f) and Table S2) to the MOF-S$ initial reaction mixture af-
forded no change in MOEF-S cubic crystal morphology. It is known that some linear (aromatic) linkers can give
rise to new phases incorporating zinc and two linkers,' but in all cases examined here the predominant phase was
MOF-S.
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Table S2. Synthetic conditions of MOF-S morphologies using ditopic linkers.

S.No. | H,BDC/ Zn(NO:3),.6H,0 Polycarbox- Solvent Tempera- Observation
(mg (mmol)/ mg(mmol) ylate, (DEF) | ture/time
mol% (mg)

1 100.0 (0.602)/ 500.0 (1.68) oxalic acid, 10mL | 100°C/24h | no change in MOEF-
5.3(3.0) S cubic morphology

2 100.0 (0.602)/ 500.0 oxalic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.6 (6.0) S cubic morphology

3 100.0 (0.602)/ 500.0 malonic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 5.3(3.5) S cubic morphology

4 100.0 (0.602)/ 500.0 malonic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.6 (7.0) S cubic morphology

S 100.0 (0.602)/ 500.0 succinic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 5.3 (4.0) S cubic morphology

6 100.0 (0.602)/ 500.0 succinic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.8 (9.0) S cubic morphology

7 100.0 (0.602)/ 500.0 glutaric acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 5.4 (4.5) S cubic morphology

8 100.0 (0.602)/ 500.0 glutaric acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.8 (9.0) S cubic morphology

9 100.0 (0.602)/ 500.0 adipic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 5.4 (5.0) S cubic morphology

10 100.0 (0.602)/ 500.0 adipic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.8 (10.0) S cubic morphology

11 100.0 (0.602)/ 500.0 suberic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 5.4 (6.0) S cubic morphology

12 100.0 (0.602)/ 500.0 suberic acid, 10mL | 100°C/24h | no change in MOEF-
(1.681) 10.8 (12.0) S cubic morphology

Tritopic carboxylic acid (H;L) linkers:

The four tritopic linkers (trimesic acid, [ 1,1'-biphenyl]-3,4',5-tricarboxylic acid, 1,3,5-tris(4-carboxyphenyl)ben-
zene (H;BTB) and 2,4,6-tris(4-carboxyphenyl)aniline (NH,-H;BTB)) (Figure Slg-j) were screened in this
study. Among these, the addition of H;BTB (i) and NH,-H;BTB (j) to the initial MOF-S reagents mixture gen-
erated different shaped crystals (see below Table S3).
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Table S3. Synthetic conditions for MOF-5-O,(600), MOF-5-O¢(856), and MOF-5-O.(575) samples.

Sample name | H,BDC/ Zn(NO;),.6H,O | Polycarboxylate | Sol- Tempera- Observation
(mg (mmol)/ mg(mmol) mol% (mg) vent | ture/ time
(DEF
)
1 (100.0 (0.602)/ 500.0 trimesic acid 10mL | 100°C/48h | no change in
(1.681) 10.5 (15.0) MOEF-S cubic
morphology
2 (100.0 (0.602)/ 500.0 1,1'-biphenyl]- | 10mL | 100°C/48h | no change in
(1.681) 3,4',5-tricarbox- MOE-5 cubic
ylic acid, morphology
8.0 (15.0)
MOF-5- (100.0 (0.602)/ 500.0 H.BTB, 15SmL | 100°C/24h | octahedral
0.(600) (1.681) 3.6 (10.0) (On) morphol-
ogy crystals ob-
tained
MOE-5- (100.0 (0.602)/ 500.0 H;BTB, 10mL | 100°C/ 24 h | cuboctahedral
Oc(856) (1.681) 1.9 (5.0) (Oc) morphol-
ogy crystals ob-
tained
MOF-5- (100.0 (0.602)/ 500.0 NH,-H;BTB, | 10mL | 100°C/24h | cuboctahedral
0(575) (1.681) 2.7 (7.5) (Oc) morphol-
ogy crystals ob-
tained

Solvent exchange and activation:

The resulting non-cubic morphology crystals of all three samples were isolated by decanting the mother liquor
and were washed with DMF. Crystals were immersed in CH,Cl, for 3 days, during which time the CH,Cl, was
replaced three times. Once solvent exchange was complete, the crystals were isolated by decanting the CH,Cl,
and evacuation under dynamic vacuum (0.0 torr) for 24 h at room temperature.

"H-NMR Spectroscopy analyses of digested non-cubic morphology samples:
As prepared non-cubic morphology ((MOF-5-04(600), MOF-5-O.(856), and MOF-5-O.(575)) samples were
digested in DCI+DMSO-d; solution(Figure S2) and analyzed by NMR spectroscopy. In all three samples, the
peaks corresponding to BDC and BTB/BTB-NH, were observed (Figure S3a-c). Incorporation of these additives
does not yield new phases as confirmed through PXRD (see details and Figure 2 in the main manuscript) and so
the linkers must occupy defect sites.

70




3
MOF-5-0,(575)

| | I

r2
MOF-5-0,(856) ﬂ
| M

COOH o 2 4 1
4 H H 3 »*N
4 H
3 H,0 H H 2
COOH "
MOF-5-0,,(600) DMSO-dg

I J

90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 0.0 -0.5
f1 (ppm)

Figure S2. Proton NMR spectrum for as synthesized three different MOF-S morphology ((MOF-5-On(600),
MOF-5-0.(856), and MOF-5-O(575)) samples after digesting in DCl+DMSO-d; solution.
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Figure S3a: Aromatic region enlarged 'H-NMR spectrum for an as prepared MOF-5-On(600) sample after di-
gesting in DCI+DMSO-ds solution.
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Figure S3b: Aromatic region enlarged "H-NMR spectrum for an as prepared MOF-5-O(856) sample after di-
gesting in DCI+DMSO-ds solution.
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Figure S3c: Aromatic region enlarged 'H-NMR spectrum for an as prepared MOF-5-O.(575) sample after di-
gesting in DCI+DMSO-ds solution.
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Tetratopic carboxylic acid (H4L) linkers:

The two tetratopic linkers 5'-((3,5-dicarboxyphenyl)ethynyl)-[ 1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid and 5'-
(4-carboxyphenyl)-[1,1":3',1"-terphenyl]-3,4",S-tricarboxylic acid (Figure S1k and S11) were screened in this
study and inclusion of both additives to the initial MOF-5 reagents mixture generated different shaped crystals
(Figure S4).

Table S4. Synthetic conditions for new morphology MOE-S using H,L linkers.

Sam- | H,BDC/ Zn(NO;),.6H,O | Polycarboxylate | Solvent | Tempera- Observation
ple (mg (mmol)/ mg(mmol) | mol% (mg) (DEF) | ture/time
name
1 100.0  (0.602)/  500.0 | 5-((3,5-dicar- | 10mL | 100°C/24h | cuboctahedral
(1.681) boxy- (Oc) morphology
phenyl)ethynyl) crystals  obtained
-[1,1':3'1"-ter- (See Figure S2 a
phenyl]-4,4"-di- and b for optical
carboxylic acid, image and PXRD
1.6 (5.0) analysis): 2986
m’/g
2 100.0  (0.602)/  500.0 | §'-((3,5-dicar- | 10mL | 100°C/24h | spherical morphol-
(1.681) boxy- ogy crystals ob-
phenyl)ethynyl) tained (See Figure
-[1,1':3'1"-ter- S2 aand b for opti-
phenyl]-4,4"-di- cal image and
carboxylic acid, PXRD analysis):
6.6 (20.5) 2445 m*/g
3 100.0  (0.602)/  500.0 | §'-(4-carboxy- | 10mL | 100°C/15h | spherical morphol-
(1.681) phenyl)- ogy crystals ob-
[1,1':3',1"-ter- tained (See Figure
phenyl]-3,4",5- S2c and d for opti-
tricarboxylic cal image and
acid, PXRD analysis):
5.0 (15.5) 2675 m?/g
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Figure S4. Optical images of different morphologies of MOF-5 crystals obtained by the addition of tetratopic
linkers S'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid (a) and 5'-(4-carboxy-
phenyl)-[1,1':3',1"-terphenyl]-3,4",5-tricarboxylic acid (b) to the reaction mixture of H,BDC and
Zn(NOs3),-6H,0. The respective PXRD patterns are shown (b) and (d).

Solvent exchange and activation:

The resulting crystals of all four samples were isolated by decanting the mother liquid and were washed with DMF.
Crystals were immersed in CH,Cl, for 3 days, during which time the CH,Cl, was replaced three times. Once sol-
vent exchange was complete, the crystals were isolated by decanting the CH,Cl, and evacuation under dynamic
vacuum (0.05 torr) for 24 h at room temperature.

SI 3. Instrumental details

Optical microscopy and scanning electron microscopy:

Inverted Leica DMIL LED and Leica DM2500 LED optical microscopes were used to determine morphologies
and suitable images collected and represented in Figure 1, 2 and S3. A JEOL JSM-7800FLV scanning electron
microscope operating with an accelerating voltage of 10 kV was used to determine commercially produced MOF-
S morphology (Figure 1). Crystal size distribution analysis graphs were processed using Image-Pro Premier and
OriginPro 8 software.

Powder X-ray diffraction

Powder X-ray diffraction (PXRD) data of all samples of MOF-S were collected on a PANalytical Empyrean dif-
fractometer in Bragg-Brentano geometry using Cu-Ka radiation (A = 1.54187 A), operating at 45 kV and 40 mA.
The incident beam was equipped with a Bragg-BrentanoHD X-ray optic using fixed slits/soller slits. The detector
was a silicon-based linear position sensitive X'Celerator Scientific operating in 1-D scanning mode. Data were
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collected from S to 50° 20 using a step size of 0.0083° and a count time of at least 10 s per step. Powder patterns
were processed using Data Viewer PANalytical and OriginPro 8 software.

Gas sorption measurements

Sorption experiments were carried out using a NOVA e series 4200 surface area analyzer (Quantachrome Instru-
ments, Boynton Beach, Florida, USA). N2 (99.999%) was purchased from Cryogenic Gases and used as received.
For N2 measurements, a glass sample cell was charged with ~30 mg sample and analyzed at 77 K. Sorption iso-
therms were collected in the NOVAwin software.

'"H-NMR measurement

All "H-NMR measurements were carried out on a Varian Vamrs 700 (700 MHz (17.6 Tesla) spectrometer. All
MOF-S three different morphologies ((MOF-5-On(600), MOF-5-O.(856), and MOF-5-O(575) ) were digested
in DCI+DMSO-d6 solution(5S00 uL DMSO-ds + 50 pL of 35 wt % DCl in D,O.)

SI 4. Packing density measurements

A standardized value for the packing or tap density can be measured using DIN, ISO 787 Part II, ISO 3953, or
ASTM B 527-93 using a jolting volumeter or tap density measurement instrument. By this method, we measured
the tap density for all samples using a custom-built jolting volumeter. Tapping in the volumeter was carried out
until the tap density of the sample being studied converged to a constant value. This typically required a minimum
0f 1,000 taps. The custom-built volumeter has a frequency of 3 taps/sec and included a 35 g weight on the powder
within the graduated cylinder for containment and consistent tap density (Figure SS). All tap density measure-
ments were conducted under inert atmosphere in a glove box. There is an insignificant reduction (at most ~150
m?/g) in surface area observed for all samples after packing density measurements.

Figure S5. Packing density measurement with custom-built jolting volumeter.

SIS. Compaction measurements

Hydrogen adsorption measurements at variable MOF-5 packing densities were performed by compacting the
MOF sample directly within the sample cell to successively higher densities using Parr™ Pellet Press (Stainless
steel punch, die holder and die with 1.27 cm dia. x 2.54 cm D die cavity, 17.8 cm L lever arm, 6.2 cm dia. steel
cam). Commercial MOF-S, cubic size-controlled, and new morphology of MOF-S crystals samples were loaded
in the sample cell inside the glovebox and compacted to a specified density using a pellet press respectively. Here
the applied force was on the order of 50 to 150 Ibs., which corresponds to between 10 MPa and 30 MPa pressure,
but the force applied will vary based on the press and sample geometry. MOF-S samples were used for successive
measurements without loading fresh MOF samples. The packing densities of the MOF sample were measured
before and after each hydrogen sorption measurement and no change in density was detected. Hydrogen adsorp-
tion isotherms were measured at 77 K temperature using cryogenic liquid baths. These both MOF sample com-
paction and hydrogen storage measurements were performed based by the literature method.?
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Figure S6. Excess H, adsorption isotherms measured at 77 K for commercial MOF-5, MOF(2349), MOF-
5(1500), MOF-5(808), MOF-5(279), mixture of MOF-5(2349) and MOF-5(808), and MOF-5-Ox(600) of
MOE-§ samples, after compacting to the specified densities.

Table S5. Compacted density, excess H, gas adsorption, density fraction and excess fraction values of all samples
listed in the below table.

MOF-5 commercial MOF-5(2349)
(Crystal density 0.594 g/cc) (Crystal density 0.594 g/cc)
Den- Density | Excess Den-
sity Excess Frac- Frac- sity Excess | Density | Excess
(g/cc) | (g/kg) tion tion (g/cc) | (g/kg) | Fraction | Fraction
0.18 | 60.3000 | 0.3030 1 0.27 | 60.715 | 0.455 1.000
021 | 59.9100 | 0.3471 | 0.9935 0.33 | 60.043 | 0.556 1.000
0.25 | 59.8900 | 0.4209 | 0.9932 0.38 | 59.082 | 0.640 0.973
0.30 | 59.3500 | 0.5051 | 0.9842 0.42 | 58478 | 0.707 0.963
0.34 | 58.3200 | 0.5724 | 0.9672 0.45| 56.429 | 0.758 0.929
0.39 | 55.0390 | 0.6566 | 0.9128
045 | 52.4780 | 0.7576 | 0.8703
0.56 | 46.2480 | 0.9428 | 0.7670
MOF-5(1500) MOF-5(808)
(Crystal density 0.594 g/cc) (Crystal density 0.594 g/cc)
Den- Excess Den-
sity Excess | Density | Frac- sity Excess | Density | Excess
(g/cc) | (g/kg) | Fraction | tion (g/cc) | (g/kg) | Fraction | Fraction
0.29 | 63.1190 | 0.4848 1 0.30 | 59.8360 | 0.50S51 1.0000
0.34 | 603152 | 0.5724 | 0.9556 03S | 59.4718 | 0.5892 0.9939
0.40 | 58.2855| 0.6734 | 0.9234 0.40 | 57.7560 | 0.6734 0.9652
0.45 | 51.2119| 0.7576 | 0.8114 0.45 | 56.7518 | 0.7576 0.9485
0.50 | 45.4286 | 0.8418 | 0.7197 0.50 | 47.5289 | 0.8418 0.7943
MOF-5(279) (Crystal density 0.594 MOF-5(2349):MOF-5(808), 7:1 mix-
g/cc) ture
Den- (Crystal density 0.594 g/cc)
sity Excess | Density Excess Excess
(g/cc) | (g/kg) | Fraction | Fraction Density | Excess Density Frac-
0.30 | 60.2829 | 0.5051 1 (g/cc) (g/kg) | Fraction | tion
0.35 | 589213 | 0.5892 0.9774 0.28 55.4539 | 04714 1
0.40 | 57.0589 | 0.6734 0.9465 0.31 55.4456 | 0.5219 | 0.9998
0.45 | 51.6274 | 0.7576 0.8564 0.33 552989 | 0.5556 | 0.9972
0.50 | 47.6547 | 0.8418 0.790S 0.35 55.1540 | 0.5892 | 0.9946
0.40 55.2989 | 0.6734 | 0.9972
0.45 53.5454 | 0.7576 | 0.9656
0.50 47.9200 | 0.8418 | 0.8641
MOF-5-0.(600)

(Crystal density 0.594 g/cc)
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Den-
sity Excess | Density | Excess
(g/cc) | (g/kg) | Fraction | Fraction

0.27 | 56.2580 | 0.454S 1

0.32 | 56.3276 | 0.5387 1.0012

0.35 | 55.6004 | 0.5892 | 0.9883

0.38 | 55.1372 | 0.6397 | 0.9801

0.41 | 55.3312 | 0.6902 | 0.9835

0.45 | 54.5163 | 0.7576 | 0.9690

048 | 48.0933 | 0.8081 | 0.8549
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Note: While this article is believed to contain correct information, Ford Motor Company (Ford) does
not expressly or impliedly warrant, nor assume any responsibility, for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, nor represent that its use would not
infringe the rights of third parties. Reference to any commercial product or process does not constitute
its endorsement. This article does not provide financial, safety, medical, consumer product, or public pol-
icy advice or recommendation. Readers should independently replicate all experiments, calculations, and
results. The views and opinions expressed are of the authors and do not necessarily reflect those of Ford.
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