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Project Objectives 
Objective 1: Apply machine learning (ML) techniques to design and experimentally demonstrate new MOFs 
having usable volumetric capacities exceeding 50 H2 g/L (single-crystal/pressure swing), without compromising 
gravimetric capacity, kinetic performance, or reversibility.  
Objective 2: Control MOF crystal morphology and crystallite size distribution to increase packing density of 
target high capacity MOF by at least 30% (compared to its powder tap density) with less than 15% decrease in 
gravimetric performance.  
 
Technical Scope Summary 
This project aims to overcome volumetric limitations associated with physisorptive hydrogen storage at both the 
materials and system level. This goal will be achieved using a combination of computational techniques and ex-
perimental synthesis and testing. Our efforts will target storage media based on metal-organic frameworks 
(MOFs), a class of hydrogen adsorbents with highly tunable properties.  
 
At the materials level, machine learning methods will be applied to our database of 476,007 real and hypothetical 
MOFs. This analysis will guide the discovery of new compounds that can break through the so-called Volumetric 
Ceiling. This performance ceiling was identified in our prior screening studies; it reveals that no known MOFs can 
surpass a usable volumetric capacity of 40 g H2/L (assuming an isothermal pressure swing between 100 and 5 bar 
at 77 K). In contrast to the conventional approach to MOF discovery, where capacity is predicted from a known 
crystal structure, this project aims to invert this process and ‘reverse engineer’ optimal MOFs with the aid of ma-
chine learning. Starting instead from a target hydrogen capacity, MOF crystallographic properties such as surface 
area, pore volume, etc. will be identified. Next, these properties will be translated into specific combinations of 
linkers, metal clusters, and MOF topologies consistent with those properties. The end result will be a catalog of 
MOFs that are purpose built for high volumetric capacity. The most promising compounds will be synthesized 
and assessed experimentally with respect to their usable hydrogen capacities.  
 
At the system level, we will develop crystal growth and processing techniques that result in MOF- based adsorbent 
beds with low void fractions. Analysis by the Hydrogen Storage Engineering Center of Excellence has shown that 
inefficient materials packing can result in density reductions of more than 60% compared to the single-crystal level. 
Therefore, packing inefficiencies have the potential to negate improvements in volumetric performance achieved 
at the materials level. Strategies to engineer particle properties and pack adsorbents with low void fraction – be-
yond routine “shake and compress” techniques – have not been widely explored. This project aims to close this 
performance gap by developing synthetic procedures that optimize particle morphology and size distribution. 
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Organization of this Final Report  

This final project report is presented in two parts. Part 1 describes efforts focused on materials development. 
This includes the identification, synthesis, and characterization of MOFs that exhibit high volumetric and gravi-
metric capacities simultaneously. Part 2 describes the outcome of crystal engineering by controlling MOF crys-
tal morphology and crystallite size distribution. 

 
 
 

PART 1: Materials Development 

Introduction 
Hydrogen (H2) is considered to be a future automotive fuel.1–6 This potential reflects its high specific energy com-
pared to competing fuels such as natural gas and gasoline, and the ability of H2 to be produced renewably and 
consumed without CO2 emissions.2,7 Nevertheless, the adoption of hydrogen in mobile applications such as fuel 
cell (FC) vehicles has been limited by its low volumetric energy density.2,6,7 Consequently, the design of low-cost 
H2 storage systems that overcome these volumetric limitations has been the focus of recent research.4,8–12 At pre-
sent, FC vehicles employ storage systems based on gaseous H2 compressed to pressures up to 700 bar.13 This ap-
proach is costly and can incur limitations in driving range.7,11,13,14  
 
Storage based on adsorption in porous hosts is an alternative to high-pressure compression.15 Due to their high 
gravimetric densities, fast kinetics, and reversibility, metal-organic frameworks (MOFs) have emerged as one of 
the most promising classes of hydrogen sorbents.2,7 MOFs are crystalline materials formed by the self-assembly of 
inorganic metal clusters and organic linkers.16–22 By virtue of their building-block structure and the large number 
of potential components, the number of MOFs is potentially limitless.21–25 Further modifications to MOF chem-
istry can be achieved by introducing functional groups, substituting different metals, and by mixing metals and/or 
linkers.26–28  
 
Despite these many possibilities, a relatively small fraction of MOFs have been synthesized.29,30 While the crystal 
structures of these ‘real’ MOFs are available in the Cambridge Structural Database (CSD),29,30 many exhibit disor-
der, missing atoms, or have negligible porosity; consequently, these materials are not immediately amenable to 
assessment via computational modeling.29,31–35  
 
One way to bypass these complications is through computational design. To date, nearly a million ‘hypothetical’ 
MOFs have been reported, 1,36,45,46,37–44 and it is reasonable to expect that many more materials will be proposed.47–

51 High-throughput screening using Grand Canonical Monte Carlo (GCMC)52–56 has been successful in identify-
ing promising candidates with superior gas storage capacities on sub-sets of these catalogs.36,38,39,46,50,57–60 Neverthe-
less, given the large number of possibilities, a systematic search across all of these materials is challenging even 
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with high-throughput techniques.1,61 Furthermore, differences in the implementation (i.e., use of different temper-
ature/pressure conditions or interatomic potentials) can complicate comparisons between screening studies. 
Thus, more efficient and consistent screening approaches are desirable for predicting the gas storage properties of 
MOFs in existing and future databases. 
 
Machine learning (ML) could provide a path forward.62–65 For ML to be helpful, access to high-quality training 
data is essential. Unfortunately, training on experimental H2 storage data in MOFs is non-trivial:1,2,6,66–68 experi-
mental uptake data is generally restricted to a relatively small number of MOFs, and can depend sensitively upon 
the experimental conditions and the purity of the sam-
ple.2,67,69 Employing a dataset based on a consistent set of 
computational predictions may be a better choice.62,63  
 
Earlier work has demonstrated that accurate isotherms 
for H2 uptake in MOFs can be predicted using the 
pseudo-Feynman-Hibbs potential (to describe H2) com-
bined with general interatomic potentials to describe the 
MOF.1,2,6,70 This approach was used to screen a database 
of 5,309 real MOFs, from which IRMOF-20 was identi-
fied and experimentally demonstrated to have a favorable 
balance of high gravimetric and volumetric H2 density.2 In 
a follow-on study a larger database of 495,305 MOFs was 
compiled from several publicly-available databases (see 
Table S1 for details).1,29,31,33,36–40,45 Following a pre-screen 
based on crystallographic properties and empirical corre-
lations, the H2 capacities of a subset of 43,777 MOFs were 
evaluated using GCMC. Three additional MOFs – SNU-
70, UMCM-9, and PCN-610/NU-100 – were identified 
and shown experimentally to out-perform the leading 
MOF candidate, IRMOF-20.1  

Table 1: Summary of recent studies that use machine learning (ML) to predict H2 adsorption in MOFs. ρcrys, vf, vsa, mpd, lcd repre-
sent single crystal density, void fraction, volumetric surface area, maximum pore diameter, and largest cavity diameter, respectively. 
R2, AUE, and RMSE represent the coefficient of determination, average unsigned error, and root-mean-square error, respectively. 

Study ML Features ML Method Properties Predicted Accuracy  

Anderson et 
al. (2019)45 

Epsilon, temperature, pressure, ρcrys, 
vf, vsa, mpd, lcd, alchemical cate-
cholate site density, unit cell volume 

Neural network77 
Total volumetric H2 for pres-
sures 0.1, 1, 5, 35, 65, and 100 
bar at 77, 160, and 295 K 

AUE = 0.75 - 2.93 g-H2 L-1 

Bucior et al. 
(2019)82 

Energetics of MOF-guest interac-
tions 

Multilinear regression 
with LASSO77  

Deliverable H2 storage capac-
ity between 2-100 bar at 77 K 
 

R2 = 0.96; MAE = 1.4 - 3.4 
g-H2 L-1; RMSE = 3.1 - 4.4 
g-H2 L-1 

Borboudakis 
et al. (2017)63 

92 binary features based on linker, 
metal cluster, and 12 functional 
groups 

Ridge linear regression 
and support vector ma-
chine with polyno-
mial/Gaussian ker-
nel77,79,80 

Total H2 storage capacity at 1 
bar and 77 K 

AUE = 0.47 (ridge regres-
sion), 0.50 (SVM) g-H2 g-1-
MOF 

Thornton et 
al. (2017)78 

Adsorption energy, ρcrys, vf, gsa, vsa, 
lcd Neural network72 

Net H2 capacity for pressure 
swing between 1 and 100 bar 
at 77 and 298 K 

R2 = 0.88; RMSE = 3.6 g-H2 
L-1 

 

Table 2. MOF datasets employed in this study.  
Source Database 

Identity 
Number of 

MOFs 
Goldsmith et al.,31 Chung et al.,33 

Moghadam et al.,29 Groom et al.30 
Real MOFs:  
UM31+CoRE33+CSD29,30 

15,235 

Chung et al.34 CoRE 201934 14,142 
Moghadam et al.,29 Groom et al.30 *CSD 2017 additional29,30  48,696 
Martin et al.38 Mail-order38 112 
Bao et al.46 In-silico deliverable46 2,816 
Bao et al.39 In-silico surface39 8, 885 
Witman et al.40 MOF-74 analogs40 61 
Colón et al.59 ToBaCCo59 13,512 
Gomez-Gualdron et al.45 Zr-MOFs45 204 
Wilmer et al.36 Northwestern36 137,000 
Aghaji et al.,37 Boyd et al.91,92  **Univ. of Ottawa37,91,92 317,462 
Lan et al.83 BJT MOFs83 303,793 
Chung et al.41,93 ***R-WLLFHS41,93 51,163 
Li et al.84 MTV84 11,555 
Anderson et al.42 CSM-2018-I42 117 
Anderson et al.43 CSM-2018-II43 32 
Anderson et al.44 CSM-2019-I44 99 
Ahmed et al.1 In-house1 18 
 Total 918,734 

 
*A subset of the CSD 2017 MOF dataset29,30 whose crystallographic properties 
were found to exhibit extremely low values (e.g GSA ~ 0) in a prior study. 
**A recent version of this database is available publicly;91,92 however, the present 
study employs an earlier version37 that was shared privately. 
***A curated subset of the Northwestern36 database. 
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The database of MOF properties71 generated in these 
prior studies presents an opportunity to develop ML 
models that can predict H2 uptake across even larger 
MOF datasets.1,71 Table 1 summarizes prior ML studies of 
H2 storage in MOFs. (Reports employing ML for other 
adsorbates such as CH4,72,73 CO2

74,75, N2
74,75 are summa-

rized in Table S2.) To the best of our knowledge, ML was 
first used to predict H2 uptake in compounds from the 
Nanoporous Materials Genome.76 A neural network 
(NN)77 was used to predict usable capacities on a test set 
of ~1000 compounds, including MOFs.78 In the same 
year, Borboudakis et al.63 predicated H2 capacities in 100 
MOFs using 92 binary features related to a MOF’s linker, 
metal cluster, and functional group(s). Ridge linear re-
gression (RR)77,79,80 and support vector machine (SVM)77,81 algorithms were used to predict gravimetric capacity. 
Later, Bucior et al82 predicted the H2 capacities of 50,000 MOFs extracted from the CSD using multi-linear regres-
sion (MLR).77 The models were trained using the energetics of H2-MOF interactions and the usable volumetric 
capacities predicted by GCMC. More recently, ML was used to predict H2 storage capacities in 105 hypothetical 
MOFs constructed from 17 different topologies, 4 distinct metal clusters, and 5 unique organic linkers.43 NN77 
models employing 11 features were trained to predict total volumetric uptake at various temperatures and pres-
sures.43  
 
Expanding upon these prior reports, the present study applies ML to explore a large database of 918,734 known 
and proposed MOFs.  The database was assembled from a diverse collection of publicly-available MOF reposito-
ries,1,29,41–45,83,84,31,33,34,36–40 and allows for a wide-ranging and consistent assessment of H2 uptake in MOFs.   
 
Here the extremely randomized trees (ERT)77,85 algorithm was identified as the most accurate ML model for pre-
dicting H2 uptake. A training set comprising  24,674 MOFs was sufficient to enable accurate predictions of usable 
capacities across 820,039 unseen compounds.71  These predictions were made using a small set of seven crystallo-
graphic features as input: single-crystal density, pore volume, gravimetric & volumetric surface area, void fraction, 
largest cavity diameter, and pore limiting diameter.  Importantly, ML identified 8,282 MOFs – 8,187 appropriate 
for pressure swing operation and 95 for temperature/pressure swing use – with the potential to exceed both the 
gravimetric and volumetric capacities of state-of-the-art materials. These compounds are comprised predomi-
nantly of hypothetical MOFs, and exhibit low densities (<0.31 g cm-3) in combination with high surface areas (> 
5,300 m2 g-1), void fractions (~0.90), and pore volumes (>3.3 cm3 g-1).  In addition to identifying high-capacity 
MOFs, the relative importance of the input features is quantified; dependencies on the ML algorithm and training 
set size and are also assessed. The single most important features for predicting H2 uptake are pore volume (for 
gravimetric capacity) and void fraction (for volumetric capacity). A simplified model using only two input features 
is demonstrated to predict capacities with high accuracy – within 0.2 wt.% and 1.4 g g-H2 L-1 of more expensive 
Monte Carlo calculations. The ML models are available for use via the web,86 allowing for rapid and accurate pre-
dictions of hydrogen capacities with only a small amount of structural data required as input. 

Methodology 
MOF database 
A database of crystal structures for 918,734 MOFs was created by combining 19 existing databases.1,29,41–

45,83,84,31,33,34,36–40 Table 2 summarizes the source databases and the number of MOFs contained in each. Out of these 
19 databases, only the UM,31 CSD,29,30 and CoRE33,34 databases contain data on MOFs that have been previously 

Table 3. Machine learning regression algorithms employed 
in this work.  

Machine Learning Algorithm Abbreviation 

Extremely Randomized Trees76,83,103,104 ERT 
Boosted Decision Trees76,92,102, 103, 104 BDT 
Bagging with Decision Trees76,9093,103,104 B/DT 
Random Forest76,90,94,103,104 RF 
Bagging with Random Forest76,93,94,103,104 B/RF 
Gradient Boosting76,92,95,102, 103, 104 GB 
Decision Trees76,90,103104 DT 
Nu-Support Vector Machine with Radial Basis Function 
(RBF) Kernel76,79,90,96,98,103104 

Nu-
SVM/RBF-K 

Support Vector Machine with RBF Kernel76,79,90,97,98,103104 SVM/RBF-K 
Support Vector Machine with Linear Kernel76,79,96,99,103104 SVM/L-K 
Linear Regression76, 77, 78,99,100,103,104 LR 
Ridge Regression76, 77, 78,99,100,103,104 RR 
K-Nearest Neighbors76,90,101,103104 K-NN 
AdaBoost76,92,102, 103, 104 AB 
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synthesized. (MOFs listed in these datasets are referred to as ‘real’ MOFs.) The remaining databases contain data 
for proposed, or ‘hypothetical,’ MOFs. The seven crystallographic properties for all MOFs in the database were 
calculated using the zeo++ code25,87–90 with a probe radius of 1.86 Å. This data is available at the HyMARC data 
hub.71 Additional details can be found in our prior work.1 These properties include: single crystal density (d), pore 
volume (pv), gravimetric surface area (gsa), volumetric surface area (vsa), void fraction (vf), largest cavity diam-
eter (lcd), and pore limiting diameter (pld).  
 
A prior study examined a subset of the present database, wherein the hydrogen uptake in 495,305 MOFs was 
estimated using the Chahine rule.71,1,2 Subsequently, usable uptake in a portion of this subset comprising 43,777 
MOFs predicted to be promising based on the Chahine rule was evaluated using Grand Canonical Monte Carlo 
(GCMC). This GCMC-evaluated dataset contained a mix of real and hypothetical MOFs: 15,235 real MOFs 
were sourced from the UM,31 CoRE,33 and Cambridge Structural Databases,29,30 and 28,542 hypothetical MOFs 
were extracted from the Mail-order,38 in silico deliverable,46 in silico surface,39 MOF-74 analogs,40 ToBaCCo,59 Zr-
MOFs,45 Northwestern,36 University of Ottawa,37,87,88 and in-house1 hypothetical MOF databases (see Ref. 1 or 
Table S1 for details).1,29,31,33,36–40 Hydrogen uptake isotherms for two operating conditions were predicted: for an 
isothermal pressure swing (PS) at T = 77 K between 5 and 100 bar, and for a combined temperature-pressure 
swing (TPS) between 77 K/100 bar (filled state) and 160 K/5 bar (empty state).  Usable gravimetric (UG) and 
volumetric (UV) capacities were then calculated based on the isotherm data. 
 
In addition to the 43,777 MOFs examined in Ref. 1, in the present study GCMC isotherms were evaluated for an 
additional 54,918 MOFs (see Ref. 1 and Section 3 of the SI for further details). These additional MOFs were 
selected at random from the 495,305 entry HyMARC database and therefore represent a more diverse sampling 
of the MOF property-space. To this dataset 423,429 additional compounds were added from 7 additional da-
tasets: BJT MOFs,83 R-WLLFHS,41,89 MTV,84 CSM-2018-I,42 CSM-2018-II,43 and CSM-2019-I,44 and selected 
MOFs from the CSD 2017 dataset.29,30 Subsequently, the capacities of the MOFs from these additional datasets 
were predicted by the ML models without retraining (i.e., no MOFs from these datasets were used for training or 
testing, and none of their isotherms were evaluated in advance with GCMC).   In total, the dataset employed in 
the present study contains H2 uptake data for 98,695 MOFs71 and crystallographic property data for 918,734 
MOFs.  
 
We note that the present MOF dataset includes approximately 74,000 compounds having open metal sites 
(OMS), comprising roughly 8% of the total dataset. As the interatomic potential used in our GCMC calculations 
is not tuned to capture the unique aspects of the H2-OMS interaction, it is possible that the calculated capacities 
for this class of MOFs will be less accurate.  Fig. S1 and Table S3 compares experiments and the present GCMC 
calculations of H2 capacities across a benchmark set of OMS MOFs discussed by García-Holley et al.90 and in our 
prior work.1 These data show that GCMC calculations using the pseudo-Feynman-Hibbs potential are in good 
agreement with experimental data for these OMS MOFs. The good agreement between theory and experiments 
is a consequence of the low temperature operating conditions used in our study, combined with the relatively low 
density of OMS in these MOFs. 
 
Machine learning model 
 
The No Free Lunch Theorem91 implies that the optimal choice of ML algorithm is problem-specific. The differing 
performance of the algorithms summarized in Tables 1 and S2 is consistent with this notion. Identifying the best 
algorithm for a given dataset requires comparing multiple ML methods, each with optimized hyperparameters. 
Unfortunately, few comparisons of ML methods for gas adsorption exist; although dozens of ML algorithms are 
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available,77,79,97–106,80,81,85,92–96  only RR,77,79,80 MLR,77 SVM,77,81 and NN77 have been examined for predicting H2 stor-
age.43,63,78,82,105 The present study casts a wider net by comparatively assessing 14 ML algorithms (Table 3).77,79,97–

106,80,81,85,92–96   
The crystallographic properties of MOFs are known to correlate with H2 capacities.2,31,90,107–110 The ML models 
developed here exploit these correlations by adopting only crystallographic properties as input features. Moreo-
ver, the number of features was restricted to a small set comprising 7 properties: d, pv, gsa, vsa, vf, lcd, and pld. 
These are the same properties employed in our prior work.1,2,111,112 Figure S2 shows the distribution of crystallo-
graphic properties for the training, test, and unseen datasets. Also, Table S4 summarizes five descriptive (mini-
mum, maximum, mean, median, and % of 0’s) and two distribution statistics (skew and kurtosis) of all crystallo-
graphic features for the training, test, and unseen datasets. (The details regarding these statistics and the defini-
tions of skew and kurtosis can be found in Section S5 of the SI). The maxima’s and minima’s of the features in the 
training set establish the validity ranges of the ML models developed here.  
 
The goal of the ML models is to predict 4 output properties: UG and UV for each of PS and TPS operating con-
ditions. This was accomplished by developing separate ML models for each of the four targeted capacities. Figure 
S3 illustrates the overall work-flow. 
 

Figure 1. Comparison of ML algorithms for predicting hydrogen uptake in MOFs.  Left (a,c) and right (b,d) panels report performance for PS 
and TPS conditions, respectively. Top (a,b) and bottom (c,d) panels report performance for usable gravimetric and volumetric capacities, respec-
tively. The abbreviations for the ML methods are defined in Table 3. 
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The existing dataset of 98,695 MOFs (for which both crystallographic and capacity data are available)71 was ini-
tially split into training and test sets of  74,201 and 24,674 MOFs, respectively, after shuffling the entire dataset.106 
ML algorithms92,95,96,106 (Table 3) were implemented using the scikit-learn library.106 Both scaled and unscaled 
features were used in training ML models. 10-fold cross-validation was used to optimize the hyperparameters of 
each model. The performance of the ML algorithms was assessed by comparing the predicted H2 capacities to the 
capacity predicted by GCMC for the MOFs in the test set. The metrics used for the performance assessment of 
ML models were the coefficient of determination (R2), average unsigned error (AUE), root-mean-squared error 
(RMSE), median absolute error (MAE), mean absolute percentage error (MAPE), and the Kendall rank correla-
tion coefficient (𝜏).  Additional details regarding these calculations can be found in Section S7 of the SI. 
 
 
Dataset size 
An obstacle to wider adoption of ML in materials science is the availability of sufficient quantities of high-quality 
training data.113,114 Unfortunately, it is not yet clear how much data is needed to construct a useful ML model for a 
given system. Fernandez et al.73 found that a reasonable balance between accuracy (R2 ~0.85 to 0.93) and compu-
tational expense for predicting methane storage in MOFs was achieved for a training set containing data on 10,000 
MOFs with 3 features. In contrast, Fanourgakis et al. 115 showed that a much smaller training set of ~1000 MOFs 
was sufficient to predict methane uptake when using six crystallographic features and four fictitious features. The 
different training set sizes required in these prior studies arise from the differing numbers and types of features 
used.  
 
The present study explores this issue further by systematically examining the effect of training set size, and the 
training set to test set ratio, on ML accuracy. For each of the four targeted capacity outputs, 100 independent ML 
models were developed by varying the size of the training set between 100 and 74,000 MOFs (see Table S5 for a 

 
 
Figure 2. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H2 capacities 
in MOFs. Data is collected at 77 K for a pressure swing between 100 and 5 bar on a test set of 24,674 MOFs. Different colors represent different 
categories of MOFs. Top (a-c) and bottom (d-f) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (a, 
d): Agreement between ML and GCMC predictions. (b, e): Difference between ML and GCMC as a function of GCMC capacity. (c, f) Distribu-
tion of differences in predictions between ML and GCMC.  
 

GCMC calculated gravimetric capacity (wt. %)M
L 

pr
ed

ic
te

d 
gr

av
im

et
ric

ca
pa

ci
ty

(w
t. 

%
)

Real MOFs
Other hypothetical MOFs
Northwestern MOFs
Univ. Ottawa MOFs

a b c

d e f

N
um

be
r o

f M
O

Fs
N

um
be

r o
f M

O
Fs

M
L 

pr
ed

ic
te

d 
–

G
C

M
C

 c
al

cu
la

te
d 

(w
t. 

%
) 

M
L 

pr
ed

ic
te

d 
vo

lu
m

et
ric

ca
pa

ci
ty

(g
-H

2
L-1

)

GCMC calculated volumetric capacity (g-H2 L-1)

GCMC calculated gravimetric capacity (wt. %)

M
L 

pr
ed

ic
te

d 
–

G
C

M
C

 c
al

cu
la

te
d 

(g
-H

2
L-1

) 

GCMC calculated volumetric capacity (g-H2 L-1)

ML predicted – GCMC calculated (wt. %) 

ML predicted – GCMC calculated (g-H2 L-1) 



10 

list of the training set sizes).  The four best-performing ERT ML algorithms identified earlier were used with 10-
fold cross-validation. The resulting models were assessed using a common test set of 24,674 MOFs.  
 
Feature importance/selection 
The well-known Chahine rule proposes a linear correlation between gravimetric surface area and excess gravimet-
ric H2 capacity in adsorbents.116,117 Nevertheless, the Chahine rule overpredicts H2 capacities for MOFs with high 
surface areas,117 and has not been extended to predict usable capacities.1,2,6 Hence, a model for predicting H2 uptake 
that is more general than the Chahine rule, yet requires limited input data, would be very helpful. In principle, ML 
could be used to generate such a predictive model if the features that are the most important for predicting H2 
uptake could be identified. Along these lines, Pardakhti et al. reported improved accuracy in predicting CH4 ad-
sorption when using a combination of (7) crystallographic and (19) chemical features.72 Recently, Moosavi et al. 
explored feature importance in predicting the synthesis of MOFs.118  
 
The present study determines the minimum number and optimal combination of crystallographic features neces-
sary to achieve a specified accuracy in predicting H2 uptake. The relative importance of the input features was 
assessed for all possible univariate and multivariate feature combinations using ERT ML models. The number of 
multivariate feature combinations, M, is given by:	𝑀(𝑛!"! , 𝑛#$%) =

&!"!!
&#$%!(&!"!)&#$%)!

, where ntot = 7 is the total 

number of available features, and 1 <= nsub <= 7 is the number  of features used as input to a given ML model. A 
total of 127 feature combinations are possible. ML models were developed for each of these feature combinations 
for each of the 4 output capacities, resulting in a total of 508 distinct ML models. All models were trained using a 
dataset of 74,021 MOFs and tested on a common set of 24,674 MOFs. 10-fold cross-validation was used for tuning 
and validating the models using only the training set. Univariate feature importance was further assessed using (i.) 
Pearson’s correlation coefficient (r),119–121 (ii), Breiman and Friedman’s tree-based algorithm as implemented in 
Scikit-learn,92,106 and (iii) the permutation importance method as implemented in rfpimp package.122 Additional 
details regarding these methods can be found in Section 13 of the SI.   
 
Results and Discussion  
 
Evaluating ML algorithms 
Tables S6-S9 illustrate the effect of several feature scaling methods on the performance of the ML algorithms 
examined here. Only the SVM family of models (SVM/L-K, SVM/RBF-K, and Nu-SVM/RBF-K)77,92,98,100,101,106 
were impacted by the choice of scaling method.   
 
Figure 1 compares the accuracy of the ML algorithms for predicting hydrogen uptake in MOFs. R2 and AUE were 
used as performance metrics. SVM variants were trained using min-max feature scaling; un-scaled features were 

used in training the remaining models. The performance of the algorithms as measured by 4 additional metrics – 

Table 4. Performance of the Extremely Randomized Trees ML algorithm in predicting UG and UV H2 capacities of MOFs under PS 
and TPS conditions. R2, AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-
squared error, and median absolute error, respectively. 

H2 capacity type R
2 AUE 

(capacity units) RMSE  
(capacity units) Kendall t MAE                  

(capacity units) 
UG at PS (wt. %) 0.997 0.14 0.18 0.961 0.10 

UV at PS (g-H2 L-1) 0.984 0.97 1.40 0.922 0.69 
UG at TPS (wt. %) 0.997 0.16 0.23 0.966 0.10 

UV at TPS (g-H2 L-1) 0.967 1.32 1.92 0.819 0.91 
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root mean square error (RMSE), explained variance (EV), MAE (median absolute error), and Kendall τ – is re-
ported in Tables S6-9.  
 
Overall, these data indicate that the tree-based ensemble methods are superior to the other methods examined. 
In particular, the Extremely Randomized Trees (ERT)77,85,106 algorithm exhibited the best performance overall. 
Boosted Decision Trees (BDT),77,92–94,104,106 Random Forest (RF),77,96,106 and Bagging algorithm vari-
ants77,95,106,123,124 (with tree-based base estimators) are nearly as accurate. The R values for ERT predictions exceed 
0.997 for gravimetric capacities, which are equivalent to errors of ~0.14 wt.%.  Volumetrically, the accuracy of the 
ERT algorithm is slightly worse than its gravimetric performance: R2 = 0.967-0.984, equivalent to errors of ~1.1 
g-H2 L-1 on average. In general, the worst-performing algorithms were linear regression, ridge regression, and sup-
port vector machine with linear kernel. For these algorithms R2 varies between 0.913 and 0.992 depending on the 
conditions (i.e., gravimetric/volumetric and PS/TPS).  As expected, the linear nature of these algorithms fails to 
fully capture the nonlinear dependence of output capacities on the multiple input features.   
 
Figure 1 also shows that all the algorithms tested yield more accurate predictions of UG capacities compared to 
those for UV. Likewise, all algorithms more accurately predict usable capacities under PS conditions than under 
TPS conditions. This reflects the fact that the functional relationships between output capacities (UG/UV) and 
input features under PS and TPS conditions are likely different, as was observed in  previously reported struc-
ture(feature)-property(capacity) relationships.1,6,125 Table 4 summarizes the performance of the ERT algorithm 
in further detail. A comparison of Tables 1 and 4 indicates that the accuracy of the present ML models surpass 
previously-reported models for H2 uptake. Furthermore, the present models also appear to be an improvement 
over earlier models that aim to predict the adsorption capacities of MOFs for any gas species, Table S2. This 
improved performance can be attributed to the exploration and optimization of multiple ML algorithms, use of 
an appropriate feature set, and the relatively large size of the present training set.  
 
Figure 2 illustrates the degree of agreement between ERT ML predictions and GCMC calculations of usable H2 
capacities under PS conditions as a function of MOF source database. (Fig. S4 shows similar data for TPS condi-
tions; see also Table 4.) As mentioned above, the present ML models more accurately predict UG capacities than 

 

Figure 3. Performance of Extremely Randomized Trees ML models for predicting usable (a) gravimetric and (b) volumetric H2 capacity as a 
function of training set size and the ratio of training to test set size. 100 different training sets ranging in size between 100 and 74,021 MOFs were 
examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using R2 (left axis, black) and the average unsigned 
error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law fit to the data.  
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UV capacities. The largest differences between ML and GCMC capacities (Fig. 2c,f & Fig. S4c,f) primarily occur 
for the real MOF dataset. In principle, these differences may arise either from ML overfitting or from inaccurate 
GCMC predictions caused by non-ideal/incomplete MOF crystal structure data (i.e., missing atoms, disorder, 
etc.) as mentioned in prior studies.1,35,126–129 ERT algorithms are fairly robust against overfitting.85 To examine the 
possibility for overfitting, test set errors were compared with training set errors as shown in Fig. S5 and Table 4. 
These data  suggest that the outliers are not a consequence of over fitting; hence, inaccuracies in the crystal struc-
ture data is proposed as the most likely source of this disagreement. 1,35,126–129  
 
Effect of training set size 
Figure 3 illustrates the impact of training set size on the accuracy of the ERT ML models as quantified using R2 
and AUE. (Table S5 summarizes the dataset sizes used in these plots.) For training sets containing more than 5000 
MOFs R2 and AUE vary slowly and in a monotonic fashion, with AUE decreasing and R2 increasing. The accuracy 
of the models is more sensitive to the size of the training set for smaller training sets containing roughly 5,000 or 
fewer MOFs. Figure S6 highlights the variation in performance for these smaller training sets.   
 
The trends AUE as a function of training set size can be fit to a power-law expression of the form AUE(m) = amb 
+ g where	m represents the size of the training set and b is the power law exponent.  Fitting this model to the data 
shown in Fig. 3 reveals that the AUE for UG converges faster with training set size (b = -0.37 and -0.43) than it 
does for UV (b = -0.16 and -0.23). A full tabulation of the power-law parameters is given in Table S10.   Based on 
these power-law expressions, one can determine the necessary size of the training set to achieve a desired level of 
accuracy. For example, assuming pressure swing operation, to achieve an AUE of approximately 0.25 wt.% and 1.5 
g-H2 L-1 requires training set sizes (for UG and UV) of less than 300 MOFs randomly selected from the diverse 
datasets used here.      
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Univariate feature importance 
Figure 4 illustrates the relative importance of the seven crystallographic features in predicting usable hydrogen 
uptake in MOFs. Feature importance was determined by developing ERT models for each single feature individ-
ually. Additional details for these models are provided in the Supporting Information. Based on these models, it 
is evident that pore volume (pv) and void fraction (vf) are the dominant features in predicting H2 capacity; these 
two properties appear as the first- or second-most important single features regardless of operating condition or 
capacity type. The importance of these features can be rationalized by two factors. First, based on the empirical 
Chahine rule, the pore volume of a MOF correlates with its excess uptake.116 Second, pore volume and void frac-
tion are related (since pv = vf d-1) – MOFs with larger pv have larger vf, and vice versa.1  
 
Conversely, the largest cavity diameter (lcd) and volumetric surface area (vsa) are the single features whose ML 
models yield the lowest accuracy.  The relative importance of the individual features for predicting UG capacities 
is: pv > d > vf > gsa > pld > lcd > vsa. This ordering is the same for PS and TPS conditions. In contrast, the im-
portance ordering for UV capacities differs based on the operating condition.  Nevertheless, vf and pv remain the 
two most important single features for both UV conditions, in that order (Fig. 4).  
 

  

Figure 4. Importance of seven features in predicting usable H2 storage capacities of MOFs. Feature importance was determined by developing 
distinct ERT models for each individual feature. The accuracy of the resulting models was assessed using R2 (left axis; black data set) and AUE 
(right axis; red data set). Models were trained on a dataset of 74,201 MOFs and tested on a set of 24,674 MOFs. pv = pore volume; d = density; vf 
= void fraction; gsa = gravimetric surface area; pld = pore limiting diameter; lcd = limiting cavity diameter; vsa = volumetric surface area. 
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Despite their limited input, the single-feature ML models illustrated in Fig. 4 achieve high accuracy. For example, 
any of the three independent models for UG-PS based only on pv, d, or vf can predict capacities with R2 > 0.95 
and with AUE of less than 0.5 wt.%. The accuracy and simplicity of the univariate ML models suggest that they 
can be used to quickly screen new MOFs for their utility in hydrogen storage. To that end, optimized single-fea-
ture ML models for the four categories of usable capacities considered here have been made available for use on 
the web with an interactive web form or with a python API.86  Furthermore, the ML models can be downloaded 
via figshare.130 These models take as input either pv (for UG predictions) or vf (for UV) of a given MOF. These 
input data can be quickly calculated from a MOF’s crystal structure using modern structure analysis codes.25,111,131–

 
 
Figure 5. Accuracy of Extremely Randomized Trees (ERT) ML models as determined by R2 and AUE as a function of the number and combination 
of input features. Each data point represents the most accurate feature combination for a given number of features. ERT models were trained on a 
dataset of 74,201 MOFs. R2 and AUE were calculated using a test of 24,674 MOFs. Feature abbreviations are defined in Fig. 4. 
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Table 5. The best combinations of features for predicting UG and UV H2 storage capacities at PS and TPS conditions. 

Condition Feature Combination  No. features R2 AUE RMSE Kendall t 
UG at PS gsa, vf, pv, lcd, pld 5 0.997 0.14 wt. % 0.19 wt. % 0.959 
UG at TPS d, vsa, pv, lcd, pld 5 0.996 0.18 wt. % 0.25 wt. % 0.959 
UV at PS vsa, vf, pv, lcd, pld 5 0.983 1.01 g-H2 L-1 1.45 g-H2 L-1 0.920 
UV at TPS vsa, vf, pv, lcd, pld 5 0.961 1.41 g-H2 L-1 2.10 g-H2 L-1 0.814 
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134  As shown in Fig. 4, these models can predict UG with an average error of less than 0.4 wt.%, and UV with errors 
less than 2.2 g-H2 L-1.  
 
Figure S7 compares the single feature importance assessments based on ERT ML models (as reported in Fig. 4) 
with three popular methods for determining feature importance: Pearson’s correlation coefficient (r),119–121 
Breiman and Friedman’s tree-based algorithm as implemented in Scikit-learn,92,106 and the permutation im-
portance method as implemented in rfpimp package.122 It is clear that the feature importance methods do not 
reproduce in detail the rank-ordering of feature importance that is suggested by our ERT ML models. Neverthe-
less, good agreement is evident more broadly. For example, in the case of UG (Fig. S8a,c), the three feature im-
portance methods suggest that in aggregate pv is the most important feature, while vsa is the least, in agreement 
with the ERT models (Fig. 4a,b).  Similarly, for UV, the importance methods suggest that vf and lcd are among 
the most and least important features, respectively. This is the same trend found in the univariate ERT models 
(Fig. 4c,d). 
 
Multivariate feature importance 
Figure 5 illustrates how the accuracy of the ML models varies with the number and combination of features. As-
suming 7 features, 27-1 = 127 possible combinations exist. For a given number of features, Fig. 5 plots the combi-
nation of features resulting in the highest accuracy model. The last section of Appendix A summarizes the perfor-
mance for all 508 possible feature combinations and capacity/operating condition types.) As expected, Fig. 5 
shows that ML accuracy generally increases as the number of input features increases. As previously discussed, 
when limited to a single feature, vf yields the best accuracy for predicting UV, while pv is the best choice for UG. 
When the feature set is extended to 2 features, the combination of d and pv is the optimal choice among the )+,* =
21 possible pairs regardless of the capacity (UG vs UV) or operating condition (PS vs TPS). For larger numbers 
of features, the optimal feature combination depends upon the operating condition and the capacity type. Based 
on the AUE, whose value tends to plateau as more features are added, highly accurate ML models can be generated 
using only 5 input features (Table 5). These data lend further support to the notion that the accuracy of a given 
ML model depends on both the number and identity of the input features. As a slightly more accurate alternative 
to the univariate web models described above, a subset of the present multivariate ML models that use 4, 5, and 7 
input features are also available on the web using an interactive web form and via a python API.86  The ML models 
can also be downloaded via figshare.130 
 
H2 uptake in unseen MOFs 
Figure 6 illustrates the H2 storage capacities of 820,039 MOFs as predicted by the 7-feature ERT ML models de-
veloped here. (This dataset is publicly accessible via HyMARC data hub.71) These MOFs are referred to as ‘un-
seen,’ in that they have not been included in the training or test sets used to develop the models. Figures 6a,b show 
UV capacities as functions of UG capacities under PS and TPS conditions, respectively. Both plots exhibit a rapid 
increase in UV at low values of UG, and reach a maximum in UV at UG values of approximately 9 wt.%. Beyond 
the maximum, UV decreases relatively slowly with increasing UG.  These trends are consistent with our earlier 
findings derived from GCMC calculations on smaller datasets.1,2,6  
 
In the case of PS operation, the maximum UV across the MOFs in the dataset is 37.4 g-H2 L-1; for TPS operation 
the maximum UV is 48.5 g-H2 L-1.  In the case of UG, the maximum value predicted is 39 wt.% for PS operation 
and 42 wt.% for TPS. These values can be placed in context by comparing against the DOE hydrogen storage 
targets, which stipulate system-level hydrogen densities of 5.5 wt% and 40 g-H2 L-1 by 2030 and 6.5 wt.%/50 g-H2 
L-1 longer-term (‘Ultimate target’).6 Given that the tank and balance-of-plant for the storage system have non-zero 
mass and volume, the MOFs examined here cannot meet the Ultimate target for UV, regardless of operating con-
dition.12 More optimism exists, however, for meeting the gravimetric targets given the high UG exhibited by these 
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systems on a MOF-only basis. Of course, an additional challenge is to identify MOFs that excel both gravimetri-
cally and volumetrically.1,2,6,31,135   
 
It is also helpful to compare the performance predictions in Figs. 6a,b with that of state-of-the-art materials. In the 
case of PS operation, our prior study demonstrated that PCN-610 (NU-100) exhibits a hydrogen capacity of 10.1 
wt.% & 35.5 g-H2 L-1,1 which to our knowledge is the best combination of gravimetric and volumetric capacities 
reported for any MOF under these conditions. The data in Figure 6a reveals that 16,345 MOFs can, in principle, 
exceed this capacity on both a UG and UV basis. In the case of TPS operation (Figure 6b), MOF-5 remains the 
benchmark, which a measured capacity of 7.8 wt.% & 51.9 g-H2 L-1.2 Figure 8c shows that only 21 MOFs out-
perform MOF-5 under these conditions. 
 
Regarding the accuracy of the present ML predictions, Table 4 shows that the AUE of these models are on the 
order of 0.15 wt.% and 1.3 g-H2 L-1. Although these errors are small, a more rigorous validation of the ML can be 
achieved with GCMC calculations. Thus, GCMC calculations were performed on a subset of MOFs that ML pre-
dicted to exhibit high UV and UG capacities. These MOFs fall within the rectangular regions shown in Figs. 6a,b, 
and exhibit capacities that meet or exceed 36 g-H2 L-1 & 7.5 wt.% for PS conditions and 48 g-H2 L-1 & 7.5 wt.% 
under TPS conditions. In total, 21,700 compounds were re-examined with GCMC based on their ML-predicted 
PS capacities, and another 7,901 were re-examined for TPS.   

 
 
Figure 6. (a,b) Machine learning predictions of usable hydrogen capacities of 820,093 MOFs. Colors indicate the originating database for a given 
MOF. (c,d) Validation of ML-predicted capacities for the highest capacity MOFs identified by ML (shown in the rectangular regions in c,d) using 
GCMC simulations. For comparison, the capacities of PCN-610/NU-100 (PS: 10.1 wt.%, 35.5 g-H2 L-1) and MOF-5 (TPS: 7.8 wt.%, 51.9 g -H2 L-

1) are shown. 
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Figure 6c compares ML and GCMC predictions for usable capacities for 21,700 high-capacity MOFs under PS 
conditions. The strong overlap in the two datasets further highlights the accuracy of the ML models. A total of 
8,187 MOFs were predicted by GCMC to outperform PCN-610/NU-100 under these conditions. A summary of 
the 10 highest-capacity MOFs, sorted based on their GCMC capacities, is provided in Table 6. (A more extensive 
listing is provided in Table S11.) The highest capacity MOFs are all hypothetical compounds: 5 originate from 
the ToBaCCo database,59 two are from the Univ. of Ottawa database,37 and the remainder are from the Northwest-
ern36 database. These MOFs all exhibit high surface areas (average =5746, range = 4346 – 7835 m2 g-1) and large 
void fractions of 0.89, on average. The range of these property values are consistent with those reported in an 
earlier study,1,136,137  and suggest that maximizing the surface area is an important design guideline for PS operation. 
The highest capacity MOF, mof_7642,59 is predicted to exhibit capacities of 11.1 wt. % and 40.5 g-H2 L-1, surpas-
sing that of PCN-610/NU-100, the record-holder under PS conditions. The crystal structure of mof_7642 is 
shown in Fig. 7a.  
 
A search in the CCDC138 was performed to identify MOFs that have been synthesized that are similar to the high-
capacity compounds identified here. The existence of similar MOFs may suggest synthetic procedures that could 
be adapted to the present systems. The top 5 MOFs under PS conditions contain relatively long tritopic linkers. 
In the case of mof_7642, this search identified the interpenetrated MOF RANCEQ139 as having a similarly index 
of 0.82. Interpenetration is fairly common in MOFs (such as mof_7642) with longer linkers, and is generally un-
desirable for achieving high uptake.  Nevertheless, several examples of successful synthesis of MOFs with long, 
multi-topic linkers that do not undergo interpenetration have been reported. These include MOF-180 and MOF-
200,140 the PCN-6X series,141 and NOTT-112.142 The next 4 PS candidates in Table 6 exhibit pillared Zn paddle-
wheel clusters with long ditopic linkers. Karagiaridi et al.143 demonstrated the feasibility of synthesizing pillared 
paddlewheel MOFs with long linkers; the SALEM-X series are examples.143 Finally, 
str_m3_o5_o20_f0_nbo.sym.1.out is based on a Zn paddlewheel cluster and a ditopic linker. HOFSUS is an ex-
ample of such a MOF.144 
 
Figure 6d provides a similar comparison between ML predictions and GCMC calculations for MOFs expected to 
exhibit high capacities under TPS conditions. Under these conditions only 95 MOFs were predicted by GCMC 

Table 6. Highest capacity MOFs, as identified by ML and verified with GCMC, under pressure swing and temperature + pressure 
swing conditions. Here NW and UO refer to the Northwestern36 and University of Ottawa databases.39 

Name Source Density    
(g cm-3) 

Grav.         
surface area 

(m
2 

g-1) 

Vol.            
surface area 

(m
2 

cm-3) 

Void     
fraction 

Pore   
volume 

(cm
3 

g-1) 

Largest 
cavity   

diameter 
(Å) 

Pore   
limiting      

diameter 
(Å) 

Usable grav. 
 capacity (wt. %) 

Usable vol. 
capacity (g-H2 L-1) 

GCMC ML GCMC ML 

Pressure swing 
mof_7642 ToBaCCo 0.30 5561 1695 0.89 2.93 12.8 11.8 11.1 10.3 40.5 37.4 
mof_7690 ToBaCCo 0.30 5715 1706 0.89 2.98 12.8 12.0 11.3 10.4 40.3 37.3 
mof_7594 ToBaCCo 0.40 5070 2031 0.86 2.15 11.2 9.7 8.6 7.9 39.9 37.0 
mof_7210 ToBaCCo 0.29 5936 1730 0.89 3.04 13.4 11.7 11.4 10.5 39.8 37.1 
mof_7738 ToBaCCo 0.25 6054 1502 0.90 3.64 14.5 13.5 13.0 12.0 39.7 37.0 
hypotheticalMOF_5045702_i_1_j_24_k_20_m_2 NW 0.31 5926 1820 0.88 2.87 16.0 11.0 10.9 10.1 39.7 37.2 
str_m3_o19_o19_f0_nbo.sym.1.out UO 0.31 5073 1583 0.90 2.88 17.7 12.9 10.8 10.1 39.7 37.1 
hypotheticalMOF_5037315_i_1_j_20_k_12_m_1 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.7 37.0 
hypotheticalMOF_5037467_i_1_j_20_k_12_m_8 NW 0.31 5860 1800 0.88 2.85 16.0 11.0 10.9 10.0 39.7 37.0 
str_m3_o5_o20_f0_nbo.sym.1.out UO 0.39 4772 1882 0.87 2.22 14.1 9.6 8.7 8.1 39.7 37.2 

Temperature + pressure swing  
str_m1_o1_o11_f0_pcu.sym.102.out UO 0.45 4352 1974 0.84 1.84 12.9 10.1 10.4 9.7 53.1 48.1 
str_m1_o1_o11_f0_pcu.sym.117.out UO 0.47 4162 1977 0.83 1.74 12.8 9.9 9.9 9.0 52.8 48.0 
str_m1_o1_o11_f0_pcu.sym.121.out UO 0.47 4263 2006 0.83 1.76 12.1 10.2 10.0 9.4 52.7 48.1 
str_m1_o1_o11_f0_pcu.sym.13.out UO 0.46 4326 2005 0.83 1.79 12.7 9.9 10.1 9.3 52.6 48.0 
str_m1_o1_o11_f0_pcu.sym.159.out UO 0.58 3703 2138 0.80 1.38 10.4 8.6 8.3 7.6 52.6 48.5 
str_m1_o1_o11_f0_pcu.sym.200.out UO 0.45 4359 1978 0.84 1.84 12.9 10.1 10.3 9.6 52.6 48.1 
str_m1_o1_o11_f0_pcu.sym.212.out UO 0.60 3417 2035 0.83 1.39 12.0 10.1 8.1 7.5 52.5 48.1 
str_m1_o1_o11_f0_pcu.sym.51.out UO 0.46 4330 2007 0.83 1.79 11.9 9.9 10.1 9.3 52.5 48.1 
str_m1_o1_o11_f0_pcu.sym.71.out UO 0.45 4436 1980 0.84 1.87 13.0 10.9 10.4 9.7 52.5 48.1 
str_m1_o1_o11_f0_pcu.sym.89.out UO 0.58 3507 2043 0.83 1.42 12.4 9.8 8.2 7.7 52.5 48.1 
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to outperform MOF-5. A summary of the 10 highest-capacity MOFs, sorted by their GCMC capacities, is pro-
vided in Table 6. (See Table S12 for a more extensive tabulation.) As found for PS operation, all of the top per-
forming candidates are hypothetical compounds.  One difference with the PS case is that all of these MOFs origi-
nate from the Univ. of Ottawa database.37 Furthermore, none of the highest capacity MOFs identified for PS op-
eration appear as top candidates for TPS. Comparing the highest-capacity MOFs for both operating conditions, it 
can be seen that the high-capacity TPS MOFs systematically exhibit lower surface areas (avg. = 4073 m2 g-1), 
smaller void fractions (avg. = 0.83), and higher densities. Hence, the categories of MOFs that maximize uptake 
under PS and TPS conditions exhibit distinct properties. These differences suggest that maximizing the surface 
area – which, as discussed above, is desirable for maximizing PS capacity – is not advantageous for TPS operation. 
This behavior can be explained by trends in total capacities,6 which the TPS capacities reported here approximate. 
More specifically, it is known that total volumetric capacities are maximized for intermediate values of the surface 
area; for larger surface areas the volumetric capacity decreases.  
 
Returning to the list of promising MOFs for TPS operation, Table 6 reports that the highest-capacity MOF, 
str_m1_o1_o11_f0_pcu.sym.102.out, has a GCMC-predicted capacity of 10.4 wt.% and 53.1 g-H2 L-1. This ca-
pacity surpasses that of MOF-5, which to our knowledge holds the capacity record under these conditions.  The 
crystal structure of this MOF is shown in Fig. 7b.  
 
The top 10 MOFs under TPS conditions contain the same Zn metal cluster and terephthalic acid linkers, where 
the linkers have been modified with varying functional groups. The slight differences in the capacities of these 
MOFs can be traced to differences in the functional groups. A similarity search based on 
str_m1_o1_o11_f0_pcu.sym.117.out identified 40 similar MOFs. Approximately 30 of these (for example, 
HIFTOG, MIBQAR, UNIGEE, VUSJUP, and ZELROZ) contain Zn metal clusters and linkers based on variants 
of terephthalic acid.  
 
Figures S8-S9 and Table S13 quantify the differences between ML and GCMC predictions on the subset of high-
capacity MOFs shown in Figs. 6c,d.  For PS operation, the AUE of ML relative to GCMC is 0.24 wt.% and 0.66 g-
H2 L-1, while for TPS the AUE is 0.24 wt.% and 1.28 g-H2 L-1. Both sets of errors are comparable to the errors 
reported in Table 4 for the original test set of MOFs. Figures S8(c, f) and S9(c, f) plot the frequency distribution 
of the differences between GCMC and ML. These distribution plots suggest that the largest differences occur for 
predictions involving real MOFs and for hypothetical MOFs extracted from databases other than those from 

  

Figure 7. Crystallographic images of the highest-capacity MOFs under (a) pressure swing and (b) temperature swing conditions. These MOFs 
originate from the ToBaCCo59  and University of Ottawa39 databases, respectively.  

C N O Zn F

a b

mof_7642 str_m1_o1_o11_f0_pcu.sym.102
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Northwestern,36 University of Ottawa,37 and BJT.83 (These MOFs are referred to as “other hypothetical MOFs” in 
Figure 6). These MOFs, along with the real compounds, exhibit higher structural diversity than those contained 
in the other databases.  For example, the diversity of the topologies used in the ToBaCCo59 and  Zr-MOFs45 data-
bases and in the linkers used in MTV-MOF84 database are larger than what is found in the databases from North-
western,36 University of Ottawa,37 and BJT.83  
 
Limitations of this Study 
As previously described, some of the high-capacity MOFs identified here may prove difficult to synthesize. Alt-
hough this limitation applies primarily to the hypothetical MOFs, in some cases real MOFs are also known to 
undergo framework collapse during activation, which would reduce capacity.1,2 Nevertheless, future improve-
ments to synthesis techniques may overcome these limitations – what is difficult to make today may be possible 
in the future. Secondly, our models do not distinguish between realistic MOFs having non-defective crystal struc-
tures and those for which the structures are defective/unrealistic. Unrealistic structures can result from incomplete 
or imperfect virtual solvent removal and the presence of partial occupancies or symmetry disorder in the crystal 
structure.31 Consequently, a defective/unrealistic MOF could be erroneously predicted to be a promising candi-
date. Follow-up calculations using GCMC and visual inspection of the crystal structure are recommended for all 
promising candidates identified by ML. Finally, the ML models developed here are non-interpretable, ‘black-box’ 
models. Although these models are demonstrated to be highly accurate, additional effort is required to assess the 
relative importance of their input data. (The approach demonstrated here for evaluating feature importance in-
volved the development of multiple models with varying numbers and combinations of features.)  Alternatively, 
interpretable white-box ML models could be developed to provide more insight into feature importance. How-
ever, our experience suggests that white-box models generate less accurate predictions. 
 
Public accessibility of ML models and datasets 
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General public can use all our ML models free of cost for the prediction of H2 storage capacities of an arbitrary 
MOF via the HyMARC website.1 An user can provide input features required by ML models either via an web 
form (Figure 8a)1 or a Python API (Figure 8b). The detailed user instructions are also provided in the HyMARC 
website.1 In addition, 16 downloadable ML models with user instructions were made publicly available via 
figshare,2 an online open access repository. All ML predicted usable gravimetric and volumetric H2 storage capac-
ities of 820K MOFs under PS (Fig. 8c) and TPS (Fig. 8d) conditions  were made public via HyMARC datahub,3 
including their 7 crystallographic features. 
Summary – Materials Discovery  

 
 
Figure 8. Open-access ML models and datasets for H2 storage in MOFs publicly accessible via the HyMARC website.  (a) Interactive web form. 
(b) Python API. Datasets containing usable gravimetric and volumetric capacities of 820K MOFs under (c) PS and (d) TPS conditions, includ-
ing 7 crystallographic properties. 
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The H2 storage capacities of nearly a million MOFs have been predicted via machine learning. The predictions 
span a diverse collection of MOFs sourced from 19 databases and reveal performance under two operating con-
ditions: pressure swing and temperature + pressure swing. More than a dozen ML algorithms were benchmarked, 
with the extremely randomized trees method found to be the most accurate. The resulting ML models are acces-
sible on the web at the HyMARC Data Hub.86 These models allow for accurate, rapid screening of the hydrogen 
storage properties of new MOFs using minimal structural data as input; only a single feature is needed for the 
simplest models. 
 
The accuracy of the ML models was characterized as a function of training set size and the number/combination 
of input features. Regarding the dependence on the training set, the accuracy of the models can be well-described 
using a simple power-law function of the training set size. The dependence on the number and combination of 
input features was determined by evaluating 508 independent ML models generated from all possible combina-
tions of the seven features. The single most important features for predicting H2 uptake are pore volume (for 
gravimetric capacity) and void fraction (for volumetric capacity). 
 
Using these models, 8,282 MOFs are identified that have the potential to exceed the capacities of state-of-the-art 
materials under usable conditions. The identified MOFs are predominantly hypothetical compounds, which (for 
pressure-swing operation) exhibit low densities (<0.31 g cm-3) in combination with high surface areas (> 5,300 
m2 g-1), void fractions (~0.90), and pore volumes (>3.3 cm3 g-1). These MOFs are suggested as targets for experi-
mental synthesis. 

 
 

PART 2: CRYSTAL ENGINEERING 

Introduction 
 
Storage of sufficient quantities of fuel on automobiles presents one of the greatest challenges to realizing a hydro-
gen economy. A number of technologies have been pursued for improving energy density of hydrogen; these are 
divided into physical-based (cold or cryo- compressed hydrogen storage) and materials-based (chemical hydrogen 
storage materials and metal hydrides, sorbents) approaches.7,145–148 Storage in metal-organic framework (MOF) 
sorbents via adsorption presents one of the most promising approaches due to fast charge/discharge kinetics, fac-
ile reversibility, and high gravimetric capacities.149 However, high volumetric densities are uncommon in MOFs, 
and these densities can be impacted by multiple factors such as MOF structure, the nature of the interaction of H2 
with the MOF, and the packing of the MOF material.150 The issue of materials packing, although acknowledged as 
an important factor, has not been widely examined.  
 
Calculations of volumetric performance often assume (unrealistic) single crystal packing densities, and it must be 
recognized that this represents an upper limit to performance. Analysis by the Hydrogen Storage Engineering Cen-
ter of Excellence (HSECoE) demonstrated that inefficient material packing can result in a >60 % volumetric den-
sity reduction compared to the single crystal.149 In other words, volumetric performance of the MOF in a real 
system will be profoundly impacted by the discrepancy between MOF material packing density and crystallo-
graphic density. Consequently, improvements to the intrinsic capacity of the adsorbent, which have been the focus 
of materials research for more than a decade, can be ‘undone’ by poor packing of the media in the storage system.  
Therefore, MOF packing efficiency is an important parameter and plays a critical role in improving volumetric 
hydrogen storage density in real systems. 
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The packing of uniform spheres has an upper limit of 74% packing efficiency.151 Achieving this threshold requires 
an ordered arrangement in space and it has recently been shown that random packing of spheres cannot exceed 
63% packing efficiency.151 For other particle shapes the results differ: randomly jammed tetrahedral dice152 exhibit 
packing efficiencies of 76% compared to 100% packing efficiency for the regularly arranged platonic solids. How-
ever, there exists no theoretical framework for predicting the minimum void space that is practically achievable for 
polydisperse shapes characteristic of MOFs. Thus, packing density studies on real MOF samples whose crystals 
exhibit different shapes and sizes is currently best pathway to understand packing efficiency. Unfortunately, strat-
egies to engineer crystal shape/size properties and pack MOFs with low void fraction have not been widely ex-
plored. Here, MOFs with targeted crystal shapes (cubic, cuboctahedral, octahedral, and spherical) and sizes are 
synthesized. Their packing density and hydrogen uptake are characterized and compared with BASF-produced 
(hereafter “commercial”) material. The optimization of crystal size and engineering of crystal morphology for 
MOF-5 is demonstrated to dramatically improve volumetric hydrogen storage performance, both in terms of pack-
ing density (up to 100% improvement) and compacted density (up to 33%) with respect to what can be achieved 
with commercial MOF-5 powders. 
 
Experimental section 
 
Materials 
Terephthalic acid (H2BDC, 98.0%), 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB, ≥98%), oxalic acid (≥99.0%), 
malonic acid (99%), succinic acid (≥99.0%), glutaric acid (99%), adipic acid (99.5%), and suberic acid (98%) 
were purchased from Sigma Aldrich. 1,3,5-Benzenetricarboxylic acid (≥98%) N,N-dimethylformamide (DMF, 
ACS grade), methylene chloride (DCM, HPLC grade, 99.9%), and zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 
ACS grade) were purchased from Fisher Scientific. N,N-diethylformamide (DEF, 99.0%) was purchased from 
Acros Organics. [1,1'-biphenyl]-3,4',5-tricarboxylic acid,153 1 2,4,6-tris(4-carboxyphenyl)aniline (NH2-H3BTB, 
H3L),153 5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H4L),154 and 5'-(4-car-
boxyphenyl)-[1,1':3',1''-terphenyl]-3,4'',5-tricarboxylic acid (H4L)155 were synthesized according to the literature 
procedure.  
 
Results and discussion 
To assess the influence of crystal size and shape on packing efficiency, the benchmark compound MOF-5 was 
selected as a model.156 MOF-5 shows one of the highest deliverable hydrogen volumetric capacities among all 
MOFs based on its single crystal density1 and, based on techno-economic analysis, can meet adsorbent cost tar-
gets.157 Nevertheless, the poor packing density of MOF-5 limits its volumetric hydrogen capacity in practice.1,158 
In the present study, cubic MOF-5 crystals with four different sizes, varying from hundreds of micrometers to 
millimeter scale, are obtained by modulating the metal:ligand (M:L) molar ratio as well as the reactant concentra-
tion. In addition, new methods for synthesizing MOF-5 crystals with different shapes by the action of additives 
are described. Controlling these aspects of MOF crystals is demonstrated to dramatically improve volumetric hy-
drogen storage performance. It is anticipated that these lessons are directly applicable to the large family of cubic 
MOFs existing in the literature. 
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Control of crystal size 
The effect of synthetic process parameters such as concentration of reagents, temperature, and time were investi-
gated for their effect on crystal size and size distribution. Reactions for shorter duration (12 to 18 h) at high tem-
perature (110 to 150 °C) afforded cubic crystals with a broad size distribution (on the order of 200-1300 μm). 
Longer durations (24 to 72 h) at lower temperatures (60 to 90 °C) yielded crystals with narrow size distributions, 
but led to a greater than 15% reduction in BET surface area. The optimal conditions for narrowing the size distri-
bution without compromising surface area were 18-24 h at 100 °C. Variation of the metal:ligand (M:L, 
Zn(NO3)2.6H2O:H2BDC) molar ratio was studied over the range of 1:1 to 5:1. For samples with M:L =1 or M:L 
≥ 4, the final product had an additional solid phase other than MOF-5. Accordingly, efforts were focused on 1 < 
M:L < 4. Additionally, the reactant concentration was varied to tune crystal size distributions.  
 
Eventually, the optimized M:L molar ratio mixtures (3.8:1, 2.3:1, 1.7:1,  and 1.7: 1(twofold dilution) were heated 
at 100 °C for 24 h. These four recipes resulted in four different crystal size distributions: MOF-5(2349), MOF-
5(1500), MOF-5(808), and MOF-5(279), respectively where the number in parentheses indicates the mean crys-
tal size in microns (Figure 1a, Supporting Information). The crystal sizes of all samples and their distributions and 

 

 
 
Figure 8. (a) Thresholded optical images of four different crystal sizes and SEM image for commercial MOF-5 crystallites. (b) and (c) Histogram 
plot (inset histogram plot for commercial MOF-5) and tabulated crystal size distributions range and median values with standard deviation (S.D.) 
and standard error (S.E.) for four different crystal sizes and commercial MOF-5 samples. (d) PXRD patterns of four crystal sizes samples com-
pared with the simulated pattern of MOF-5 computed from the crystal structure (refcode SAHYOQ). (e) N2 sorption isotherms of four crystal 
sizes (adsorption data are shown with filled symbols while desorption data are shown with empty symbols). 

  
 

 

 
 
Figure 9. (a) Optical images of MOF-5 crystals with controlled morphologies. (b) and (c). Histogram plot and tabulated crystal size distributions 
range and median values for different morphologies of MOF-5. (d) PXRD patterns of new MOF-5 morphologies compared with the simulated 
pattern of MOF-5 computed from the crystal structure (refcode SAHYOQ). (e) N2 sorption isotherms for different morphologies of MOF-5 
(adsorption data are shown with filled symbols while desorption data are shown with empty symbols).  
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statistics are represented in Figure 9b and 9c. The crystal sizes of these samples were compared to commercial 
MOF-5 (Figure 9a) which has submicron average crystal size. Phase purity of all samples was confirmed through 
powder X-ray diffraction, and it was observed that powder patterns of all samples agree with the calculated pattern 
of MOF-5 simulated from the crystal structure (Figure 9d). All samples exhibit very good surface areas (3505-
3464 m2/g) matching the expected theoretical surface area (3563 m2/g) of MOF-5 (Figure 9e). 
 
Morphology engineering 
 
Inspired by observations of different morphologies of MOF-5 by the action of a tricarboxylic acid linker,158 we 
conjectured that carboxylic acids can serve as additives for synthesizing new morphologies. An array of di-, tri-, 
and tetra-topic carboxylic acids were examined as morphology modifiers (Figure S1, Supporting Information); 
the role of additive concentration in influencing morphology by varying the additive molar ratio while keeping 
the ratio of BDC and Zn(NO3)2.6H2O (1:2.8 molar ratio) unchanged was also examined (Supporting Infor-
mation). 
 
Ditopic carboxylic acid (H2L) linkers 
Several alkane dicarboxylic acids including oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and 
suberic acid were tested for their ability to modify morphology when employed as additives at the 5-10 mol% 
level. It was observed that introducing these carboxylic acids to the MOF-5 reaction mixture afforded no change 
in MOF-5 cubic crystal morphology. It is known that some linear (aromatic) linkers can give rise to new phases 
incorporating zinc and two linkers,159 but in all cases examined here the predominant phase was MOF-5.  
 
Tritopic carboxylic acid (H3L) linkers 
Four tritopic carboxylic acids (trimesic acid, [1,1'-biphenyl]-3,4',5-tricarboxylic acid, 1,3,5-tris(4-carboxy-
phenyl)benzene (H3BTB) and 2,4,6-tris(4-carboxyphenyl)aniline (NH2-H3BTB)) were screened. Among these, 
the addition of H3BTB and NH2-H3BTB to the initial MOF-5 reagent mixture were observed to generate different 
shaped crystals. When ~4 mol% H3BTB was added to the MOF-5 reaction mixture and heated at 100 °C for 24 h, 
uniform octahedral (Oh) morphology crystals (MOF-5-Oh(600)) are synthesized, while the addition of lower 
amounts of H3BTB (~2 mol%) to the MOF-5 reaction mixture at 100 °C for 48 h yielded uniform cuboctahedral 
(Oc) shaped crystals (MOF-5-Oc(856)). The addition of H3BTB at concentrations greater than ~4 mol% resulted 
in both needle- and octahedral-shaped crystals which is consistent with a mixed linker MOF where the needles 
correspond to UMCM-1.160,161 Similarly, the addition of NH2-H3BTB (~3 mol%) to the reaction mixture at 100 °C 
for 24 h resulted in cuboctahedral shaped crystals (MOF-5-Oc(575)). Addition of this additive in higher mol% 
resulted in the final product having an additional crystalline solid phase other than MOF-5 as well as a greater than 
15% reduction in BET surface area.  
 
The obtained new morphologies (MOF-5-Oh(600), MOF-5-Oc(856), and MOF-5-Oc(575) where the number 
indicates the mean crystal size in microns) and their crystal size distributions and statistics are represented in Fig-
ures 9a, 9b, and 9c). PXRD patterns of these non-cubic morphologies are consistent with the pattern for MOF-5 
simulated from the single crystal X-ray structure (Figure 9d). This reveals that the overall framework structure 
remains unchanged signaling the ability of additives to engineer morphology without substantially changing crys-
tal structure. All samples (MOF-5-Oh(600), MOF-5-Oc(856), and MOF-5-Oc(575)) exhibit a small reduction 
(at most ~150 m2/g) in BET surface area compared to optimal cubic MOF-5 (Figure 9e).  
 
Tetratopic carboxylic acid (H4L) linkers 
Tetratopic (5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid and 5'-(4-carboxy-
phenyl)-[1,1':3',1''-terphenyl]-3,4'',5-tricarboxylic acid) carboxylic acids added to the initial MOF-5 reagent mix-
ture generated different cuboctahedral, octahedral, and spherical shaped crystals in 24 h at 100 °C respectively 
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(Figure S3a, Supporting Information). The PXRD patterns of these samples demonstrate that they are MOF-5 
(Figure S3b, Supporting Information). However, with these new morphologies reproducibility is a major issue 
and a greater than 15% reduction in BET surface area was observed making them unsuitable for hydrogen storage.   
 
Mechanism of crystal morphology engineering  
 
To understand the evolution of MOF-5 morphologies in the presence of additives, the relative growth rates of the 
different surface facets of the crystal must be accounted for. Changing reagent concentration, the presence of ad-
ditives, and/or modulation of synthesis conditions can suppress the growth rate of certain crystallographic facets. 
Regardless of changes made to the relative concentrations of reagents (M:L molar ratio), temperature, and reaction 
time for MOF-5 synthesis, cubic morphology crystals with {100} crystallographic facets were consistently ob-
tained. This indicates that slow crystal growth occurs along the {100} facet (Scheme 1a).  
 

 

 
 
Scheme 1. A schematic representation of crystal growth mechanism for all three morphologies of the MOF-5. The cubic crystal morphology (a) 
is controlled by the slower crystal growth rate along {100} facet direction. The additive (m-terephenyl-4,4′-dicarboxylate shown in green) blocks 
MOF-5 growth along the {111} direction partially or totally at the expense of all {100} facets during crystal growth which results in the formation 
of cuboctahedral (b) and octahedral (c) crystal morphologies, respectively. 
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By contrast, H3L or H4L additives significantly alter 
the relative growth rates of crystal facets, resulting 
in different crystal morphologies. Among (H3L or 
H4L) additives, only those containing a m-ter-
ephenyl-4,4′-dicarboxylic acid moiety resulted in 
non-cubic morphologies. We hypothesize that the 
m-terephenyl-4,4′-dicarboxylic acid moiety is re-
sponsible for the formation of the modified crystal 
morphology because it can bridge two Zn4O clus-
ters situated diagonally across a pore window in the 
(100) plane of MOF-57 (oxo-oxo length of 18.303 
Å). The notion that a m-terephenyl-4,4′-dicarbox-
ylate can bridge this distance is supported by in-
spection of the   MOF-177162 structure; the closest 
distance between Zn4O units in this MOFs is 
18.432 Å and these are bridged by m-terephenyl-
4,4′-dicarboxylate units of 1,3,5-tris(4-benzoate)benzene. Thus, during the initial stage of crystal growth, the ad-
ditive containing the m-terephenyl-4,4′-dicarboxylic acid moiety (Scheme 1) blocks MOF-5 growth along the 
{111} facet direction which results in a slow growth rate of this facet and expression of this crystal surface. This 
additive blocks the {111} facet direction accompanied 
by the comparable growths rate of both {100} and 
{111} facets on the crystal surface when the modulator 
is at low concentrations. Therefore, cuboctahedral 
shaped crystals covered by six {100} and eight {111} 
facets are observed (Scheme 1b). At higher additive 
concentrations, MOF-5 growth along the {111} facet 
direction is blocked at the expense of all regularly ob-
served {100} facets resulting in the formation of octa-
hedral crystal morphology entirely covered by eight 
{111} facets (Scheme 1c). In contrast, additives lacking 
the m-terephenyl-4,4′′-dicarboxylic acid motif are 
larger or smaller than the cluster spacing on the MOF-
5 {111} facet and accordingly these additives do not 
yield new morphologies. These morphological transitions clearly demonstrate that employing additives that se-
lectively interact with certain crystallographic facets and varying their concentration can change the relative 
growth rate of different crystallographic facets to control morphology and provides a designed way to control 
morphology that complements approaches based on surfactants.163,164 
 
Packing density  
 
In hydrogen storage applications it is desirable to fill the storage vessel with sorbent in a manner that minimizes 
the presence of voids and thereby maximizes the volumetric density. The packing density for all samples was op-
timized and measured using a jolting volumeter (see experimental details in Supporting Information).  The num-
ber of taps vs. packing density for commercial MOF-5, size-controlled MOF-5 (MOF-5(2349), MOF-5(1500), 
MOF-5(808), and MOF-5(279)), and controlled crystal morphology (MOF-5-Oh(600), MOF-5-Oc(856), and 
MOF-5-Oc(575)) samples was monitored. Packing density increases with increasing number of taps until it con-
verges to a constant value (Figure 10). It was observed that all samples exhibit a notable improvement in packing 

 
Figure 10. Representative packing density measurements of MOF-5 cu-
bic size-controlled, and different non-cubic crystal morphology samples. 

Table 7. Representative packing density improvement for MOF-5 
cubic size-controlled, and different non-cubic crystal morphology 
samples compared to commercial MOF-5. 
 

Sample 
name 

Packing 
density 
(g/cc) 

Improvement over 
commercial MOF-5 

(in %) 
commercial MOF-5 0.189 - 
MOF-5(2349) 0.355 87 
MOF-5(1500) 0.342 81 
MOF-5(808) 0.346 83 
MOF-5(279) 0.308 63 
MOF-5-Oh(600) 0.365 93 
MOF-5-Oc(856) 0.353 87 
MOF-5-Oc(575) 0.352 86 
MOF-5(2349):MOF-
5(808), 7:1 mixture 

0.380 100 
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density of (63% to 93%) compared to commercial MOF-5 (Table 7). Additionally, the packing density of a mix-
ture of size-controlled of MOF-5(2349) and MOF-5(808) in a 7:1 mass ratio165 displays a remarkable (100%) 
improvement over commercial MOF-5.  All newly synthesized size-controlled cubic and non-cubic morphology 
crystals possess low external surface area that allows the larger size crystals to flow more easily. Consequently, these 
samples becomes more compact upon tapping when compared to small crystallite sample of commercial MOF-5, 
which exhibits high external surface area with more cohesive behavior impeding free flow of crystals.166,167 Empir-
ically, non-cubic crystal morphology samples (MOF-5-Oh(600), MOF-5-Oc(856), and MOF-5-Oc(575)) have 
less electrostatic charge than cubic MOF-5 samples and are relatively free-flowing leading to the greater individual 
packing densities. However, in a practical storage system some degree of mechanical compaction may be used to 
further increase capacity beyond powder density. It is not certain that these improved powder densities can trans-
late to improvements after densification.   
 
Compaction study 
 
Hydrogen gas storage measurements were performed for commercial MOF-5, size-controlled MOF-5, a bimodal 
mixture of MOF-5(2349) and MOF-5(808), and octahedral crystal morphology samples to quantify the influ-
ence of mechanical compaction on the hydrogen adsorption capacity at 77K. Compaction represents an approach 
to further densify materials beyond the observed tap densities albeit with the risk of structural damage due to high 
contact pressures. Selected measurements are provided in Figure S6, Supporting Information, which demonstrate 
the excess hydrogen adsorption isotherms after compacting samples to successively higher densities. The com-
mercial MOF-5 and size-con-
trolled MOF-5 (MOF-5(2349), 
MOF-5(1500), MOF-5(808), 
and MOF-5(279)) samples retain 
greater than 95% of their excess 
gravimetric hydrogen capacity up 
to a compaction density fraction 
(packing density/crystal density) 
of between 57-70%; thereafter 
their hydrogen capacity decreases 
with increasing compaction den-
sity of the sample (Figure 11)168 
consistent with structural dam-
age.167 By contrast, the size-con-
trolled MOF-5 bimodal mixture 
of MOF-5(2349) and MOF-
5(808) in a 7:1 mass ratio and 
MOF-5-Oh(600) samples retain 
high gravimetric capacity up to 
compaction density of approxi-
mately 75% vs. excess hydrogen gas adsorption. Importantly, the compaction density for MOF-5(2349), MOF-
5(1500), MOF-5(808) and MOF-5(279), 7:1 mixture, and MOF-5-Oh(600) samples exhibit improvements over 
the compacted density of commercial MOF-5 with negligible performance loss respectively.  The 7:1 mixture re-
sulted in the most notable density improvement of 33% when comparing the inflection point from the commercial 
MOF-5 to maintain powder adsorption performance (green dashed vs black dashed trend lines). This result indi-
cates that an improvement in powder density results in less damage upon compaction, presumably due to the pres-
ence of an optimized arrangement of crystallites and minimization of void space prior to compression. Conse-

 
Figure 11. Excess adsorption of hydrogen gas vs. compaction density. The x-axis corre-
sponds to the density of the compacted MOF-5 sample divided by its crystal density (0.594 
g/cc).168 The y-axis corresponds to the ratio between the maximum excess hydrogen adsorp-
tion at 77 K for a MOF-5 sample compacted to a specific density by the value for the initial 
value measured for the MOF-5 sample.  

0.85

0.70
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quently, the present samples achieve an unprecedented density of 0.45 g/cm3 while maintaining gravimetric per-
formance (See Table S5, Supporting Information). Any percentage gain in volumetric capacity from the density 
improvement is a direct gain in driving range contributing to a projected system can exceed the performance of 
the current state-of-the art 700 bar compressed gas system in tandem with system engineering improvements as 
shown in Figure 12. 
 
 
 
 
Storage System Projections  
 
The correlation between material level and system-
level volumetric hydrogen capacities represented in 
Figure 12.  The HSECoE adsorbent system model 
used for these system predictions takes as input MOF 
material properties and as output predicts the system 
characteristics of a full scale 5.6 kg storage c system.  
The system assumptions include a baseline multi-
layer vacuum insulation (MLVI) thickness of 23 mm 
and a 3/8-inch liquid N2 channels to reduce the type-
1 tank temperature during fueling.  The initial system 
model capacity prediction is based on a full state and 
an empty state of 100 bar/77 K and 5 bar/160 K, re-
spectively.  The complete set of assumptions and schematics of the HSECoE system adsorbent system model have 
been published by Purewal et al.169 The effects of the improvements on the system-level volumetric capacity from 
the 7:1 mixture is depicted in the Figure 12 (waterfall chart). The system engineering improvements include op-
timization of the vacuum insulation (10 mm), reduction of the N2 channel diameter (1/4”), and SS type 1 tank.  
Controlling crystal size and use of bimodal distribution of MOF-5 in tandem with system optimization leads to a 
large decrease in the external volume of about 109L and exhibits a 30.5 g/L volumetric capacity, sufficient to sur-
pass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE 2020 
target for volumetric capacity (30 g/L). Similarly impressive results are obtained with MOF-5-Oh(600) of a single 
size suggesting a pathway for even more dramatic improved by controlling size distribution in tandem with crystal 
shape. 
 
 
Summary – Crystal Engineering 
 
The enhancement volumetric storage density of hydrogen storage systems to levels required for automotive appli-
cations is a longstanding problem that particularly plagues physical adsorbents. Although compaction of MOFs 
has been extensively investigated, the challenge of performance erosion as single crystal densities are approached 
is universally observed. Here, the ability to achieve high volumetric storage densities (75% of single crystal den-
sity) without substantial degradation is achieved. A key to success is the use of crystals with a bimodal size distri-
bution or octahedral morphology sample that can fill space efficiently within a bed and can be compacted with 
minimal structural damage. A complementary approach based on morphology engineering is also shown to be 
promising and relies on face-selective inhibition of crystal growth to induce non-cubic morphologies. The princi-
ples developed here are fully applicable to the large class of cubic MOF sorbents currently being considered in 
areas as diverse batteries, carbon capture, separations, and fuel gas storage. 
 

 
 
Figure 12. Waterfall chart depicting the total external system volume of 
bimodal MOF-5(2349):MOF-5(808), 7:1 mixture sample required to 
store 5.6 kg of usable hydrogen gas. Starting from an empty tank storing 
hydrogen gas at 77 K and 100 bar, the reduction in external volume is 
shown for MOF-5(2349):MOF-5(808), 7:1 mixture sample (at 0.40 g/cc 
and 0.45 g/cc without performance loss) to the system. 
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End of project goal : Demonstrate either: (A) 1-2 MOFs having usable volumetric capacities exceeding that of the state 
of the art material (50 g/L, single-crystal/pressure swing), with less than 10% compromise to gravimetric capacity, or 
(B) at least one MOF with a packing density equivalent to 70% of the single crystal density with <15% decrease in grav-
imetric performance. 
As shown in Fig. 11, we successfully achieved the end of project goal “(B)” by demonstrating “at least one MOF 
with a packing density equivalent to 70% of the single crystal density with <15% decrease in gravimetric perfor-
mance.” Four MOFs samples/morphologies satisfy this milestone: MOF-5-Oh(600), MOF-5(808), MOF-
5(2349), and a 7:1 mixture of MOF-5(2349):MOF-5(808). Importantly, the packing density of a mixture of size-
controlled of MOF-5(2349) and MOF-5(808) in a 7:1 mass ratio165 displays a remarkable (100%) improvement 
over commercial MOF-5.   
 
Acknowledgement  
 
Financial support for this study was provided by the US Department of Energy, Office of Energy Efficiency and 
Renewable Energy, Grant no. DE-EE0008093. Partial computing resources were provided by the NSF via 
grant 1531752 MRI: Acquisition of Conflux, A Novel Platform for Data-Driven Computational Physics (Tech. 
Monitor: Ed Walker).  The authors acknowledge Jesse Adams, Dr. Zeric Hulvey, Ms. Courtney Pailing, Mr. Nick 
Wunder, Ms. Nalinrat Guba and Dr. Caleb Phillips for facilitating web hosting of the ML models and the develop-
ment of an application programmers interface. A.A. acknowledges Profs. Randall Snurr and Tom Woo for provid-
ing access to their MOF databases; Dr. Maciej Haranczyk for use of the Zeo++ code and the mail-order MOF 
database; and Prof. Adam J. Matzger, Dr. Antek G. Wong-Foy, Dr. Saona Seth, and Dr. Yiyang Liu for support for 
MOF design. 

 

References 
 
(1)  Ahmed, A.; Seth, S.; Purewal, J.; Wong-Foy, A. G.; Veenstra, M.; Matzger, A. J.; Siegel, D. J. Exceptional 

Hydrogen Storage Achieved by Screening Nearly Half a Million Metal-Organic Frameworks. Nat. 
Commun. 2019, 10 (1), 1568. https://doi.org/10.1038/s41467-019-09365-w. 

(2)  Ahmed, A.; Liu, Y.; Purewal, J.; Tran, L. D.; Veenstra, M.; Wong-Foy, A.; Matzger, A.; Siegel, D. 
Balancing Gravimetric and Volumetric Hydrogen Density in MOFs. Energy Environ. Sci. 2017, 10, 2459–
2471. https://doi.org/10.1039/C7EE02477K. 

(3)  Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. Exceptional H2 Saturation Uptake in Microporous Metal-
Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 3494–3495. https://doi.org/10.1021/ja058213h. 

(4)  Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National 
Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catal. 
Today 2007, 120 (3), 246–256. https://doi.org/10.1016/j.cattod.2006.09.022. 

(5)  Greene, D. L.; Joseck, F.; Duleep, G.; -Oak, G. XI-13 FY 2013 Annual Progress Report DOE Hydrogen and 
Fuel Cells Program DOE Manager Subcontractor: Overall Objectives Contribution to Achievement of DOE 
Systems Analysis Milestones XI.1 Worldwide Status of Hydrogen Fuel Cell Vehicle Technology and Prospe. 

(6)  Allendorf, M. D.; Hulvey, Z.; Gennett, T.; Ahmed, A.; Autrey, T.; Camp, J.; Seon Cho, E.; Furukawa, H.; 
Haranczyk, M.; Head-Gordon, M.; et al. An Assessment of Strategies for the Development of Solid-State 
Adsorbents for Vehicular Hydrogen Storage. Energy Environ. Sci. 2018, 11 (10), 2784–2812. 
https://doi.org/10.1039/C8EE01085D. 

(7)  Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High Capacity Hydrogen Storage Materials: Attributes for 
Automotive Applications and Techniques for Materials Discovery. Chem. Soc. Rev. 2010, 39, 656–675. 



30 

https://doi.org/10.1039/b802882f. 
(8)  Long, J. R. 201 “Hydrogen Storage in Metal-Organic Frameworks,” J. R. Long; U.S. Department of Energy, 

Hydrogen and Fuel Cells Program 2015 Annual Merit Review Proceedings: Project ST103. 
Https://Www.Hydrogen.Energy.Gov/Pdfs/Review15/St103_long_2015_o.Pdf.; 2015. 

(9)  DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles, 
Https://Energy.Gov/Eere/Fuelcells/Doe-Technical-Targets-Onboard-Hydrogen-Storage-Light-Duty-
Vehicles. 

(10)  Astiaso Garcia, D.; Barbanera, F.; Cumo, F.; Di Matteo, U.; Nastasi, B. Expert Opinion Analysis on 
Renewable Hydrogen Storage Systems Potential in Europe. Energies 2016, 9 (11), 963. 
https://doi.org/10.3390/en9110963. 

(11)  Riis, T.; Sandrock, G.; Ulleberg, Ø.; Vie, P. J. S. Hydrogen Storage R&D: Priorities and Gaps. In 
Hydrogen Production and Storage: R&D Priorities and Gaps; International Energy Agency: Paris, France, 
2006; pp 19–33. 

(12)  Purewal, J.; Veenstra, M.; Tamburello, D.; Ahmed, A.; Matzger, A. J.; Wong-Foy, A. G.; Seth, S.; Liu, Y.; 
Siegel, D. J. Estimation of System-Level Hydrogen Storage for Metal-Organic Frameworks with High 
Volumetric Storage Density. Int. J. Hydrogen Energy 2019, 44 (29). 
https://doi.org/10.1016/j.ijhydene.2019.04.082. 

(13)  Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T. F.; Ashuri, T.; Krohn, J.; 
Manoharan, Y.; Hosseini, S. E.; Butler, B.; et al. Hydrogen Fuel Cell Vehicles; Current Status and Future 
Prospect. Appl. Sci. 2019, 9 (11), 2296. https://doi.org/10.3390/app9112296. 

(14)  Makridis, S. S. Hydrogen Storage and Compression. In Methane and Hydrogen for Energy Storage; 
Carriveau, R., Ting, D. S.-K., Eds.; The Institution of Engineering and Technology, 2016; pp 1–28. 

(15)  "Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence,” 
Mike Veenstra, Jun Yang, Chunchuan Xu, Manuela Gaab, Lena Arnold, Ulrich Muller, Donald J. Siegel, 
and Yang Ming.; U.S. Department of Energy, Hydrogen and Fuel Cells Program 2014 Annual Merit 
Review Proceedings: Project 
ST010.https://www.hydrogen.energy.gov/pdfs/review14/st010_veenstra_2014_o.pdf. 

(16)  Öhrström, L. Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and 
Why We Need Them. Crystals 2015, 5 (1), 154–162. https://doi.org/10.3390/cryst5010154. 

(17)  Fischer, R. A.; Schwedler, I. Terminologie von Metall-Organischen Gerüstverbindungen Und 
Koordinationspolymeren (IUPAC-Empfehlungen 2013). Angew. Chemie 2014, 126 (27), 7209–7214. 
https://doi.org/10.1002/ange.201400619. 

(18)  Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, 
M.; Paik Suh, M.; Reedijk, J. Terminology of Metal–Organic Frameworks and Coordination Polymers 
(IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85 (8), 1715–1724. 
https://doi.org/10.1351/PAC-REC-12-11-20. 

(19)  Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. 
S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size 
Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. 
https://doi.org/10.1515/pac-2014-1117. 

(20)  Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, 
M.; Suh, M. P.; Reedijk, J. Coordination Polymers, Metal–Organic Frameworks and the Need for 
Terminology Guidelines. CrystEngComm 2012, 14 (9), 3001. https://doi.org/10.1039/c2ce06488j. 

(21)  O’Keeffe, M. Nets, Tiles, and Metal-Organic Frameworks. APL Mater. 2014, 2 (12), 124106. 
https://doi.org/10.1063/1.4901292. 

(22)  Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary Building Units, 
Nets and Bonding in the Chemistry of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1257. 
https://doi.org/10.1039/b817735j. 



31 

(23)  Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48 (3), 722–730. 
https://doi.org/10.1021/ar500432k. 

(24)  Kontijevskis, A. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular 
Frameworks. J. Chem. Inf. Model. 2017, 57 (4), 680–699. https://doi.org/10.1021/acs.jcim.7b00006. 

(25)  Martin, R. L.; Smit, B.; Haranczyk, M. Addressing Challenges of Identifying Geometrically Diverse Sets 
of Crystalline Porous Materials. J. Chem. Inf. Model. 2012, 52 (2), 308–318. 
https://doi.org/10.1021/ci200386x. 

(26)  Sun, D.; Sun, F.; Deng, X.; Li, Z. Mixed-Metal Strategy on Metal–Organic Frameworks (MOFs) for 
Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-
MOF-74. Inorg. Chem. 2015, 54 (17), 8639–8643. https://doi.org/10.1021/acs.inorgchem.5b01278. 

(27)  Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. 
Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967), 
846–850. https://doi.org/10.1126/science.1181761. 

(28)  Park, J.; Kim, H.; Han, S. S.; Jung, Y. Tuning Metal–Organic Frameworks with Open-Metal Sites and Its 
Origin for Enhancing CO 2 Affinity by Metal Substitution. J. Phys. Chem. Lett. 2012, 3 (7), 826–829. 
https://doi.org/10.1021/jz300047n. 

(29)  Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-
Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic 
Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29 (7), 2618–2625. 
https://doi.org/10.1021/acs.chemmater.7b00441. 

(30)  Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta 
Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72 (2), 171–179. 
https://doi.org/10.1107/S2052520616003954. 

(31)  Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Theoretical Limits of Hydrogen Storage in 
Metal–Organic Frameworks: Opportunities and Trade-Offs. Chem. Mater. 2013, 25 (16), 3373–3382. 
https://doi.org/10.1021/cm401978e. 

(32)  Altintas, C.; Avci, G.; Daglar, H.; Nemati Vesali Azar, A.; Erucar, I.; Velioglu, S.; Keskin, S. An Extensive 
Comparative Analysis of Two MOF Databases: High-Throughput Screening of Computation-Ready 
MOFs for CH4 and H2 Adsorption. J. Mater. Chem. A 2019, 7 (16), 9593–9608. 
https://doi.org/10.1039/c9ta01378d. 

(33)  Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. 
K.; Sholl, D. S.; Snurr, R. Q. Computation-Ready, Experimental Metal−Organic Frameworks: A Tool To 
Enable High-Throughput Screening of Nanoporous Crystals. Chem. Mater. 2014, 26, 6185–6192. 

(34)  Chung, Y. G.; Haldoupis, E.; Bucior, B. J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vogiatzis, K. D.; 
Milisavljevic, M.; Ling, S.; Camp, J. S.; et al. Advances, Updates, and Analytics for the Computation-
Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. J. Chem. Eng. Data 2019, 
64 (12), 5985–5998. https://doi.org/10.1021/acs.jced.9b00835. 

(35)  Chen, T.; Manz, T. A. Identifying Misbonded Atoms in the 2019 CoRE Metal–Organic Framework 
Database. RSC Adv. 2020, 10 (45), 26944–26951. https://doi.org/10.1039/D0RA02498H. 

(36)  Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Large-Scale 
Screening of Hypothetical Metal–Organic Frameworks. Nat. Chem. 2011, 4 (2), 83–89. 
https://doi.org/10.1038/nchem.1192. 

(37)  Aghaji, M. Z.; Fernandez, M.; Boyd, P. G.; Daff, T. D.; Woo, T. K. Quantitative Structure – Property 
Relationship Models for Recognizing Metal Organic Frameworks ( MOFs ) with High CO 2 Working 
Capacity and CO2/CH4 Selectivity for Methane Purification. 2016, 4505–4511. 
https://doi.org/10.1002/ejic.201600365. 

(38)  Martin, R. L.; Lin, L. C.; Jariwala, K.; Smit, B.; Haranczyk, M. Mail-Order Metal-Organic Frameworks 
(MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic 



32 

Molecules. J. Phys. Chem. C 2013, 117 (23), 12159–12167. https://doi.org/10.1021/jp401920y. 
(39)  Bao, Y.; Martin, R. L.; Haranczyk, M.; Deem, M. W. In Silico Prediction of MOFs with High Deliverable 

Capacity or Internal Surface Area. Phys. Chem. Chem. Phys. 2015, 17 (18), 11962–11973. 
https://doi.org/10.1039/C5CP00002E. 

(40)  Witman, M.; Ling, S.; Anderson, S.; Tong, L.; Stylianou, K. C.; Slater, B.; Smit, B.; Haranczyk, M. In 
Silico Design and Screening of Hypothetical MOF-74 Analogs and Their Experimental Synthesis. Chem. 
Sci. 2016, 7 (9), 6263–6272. https://doi.org/10.1039/C6SC01477A. 

(41)  Chung, Y. G.; Gómez-gualdrón, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H.; Vermeulen, N. A.; 
Stoddart, J. F.; You, F.; Hupp, J. T.; et al. In Silico Discovery of Metal-Organic Frameworks for 
Precombustion CO 2 Capture Using a Genetic Algorithm. 2016, No. October. 

(42)  Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Go, D. A. Role of Pore Chemistry and Topology in the 
CO 2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chem. Mater 
2018, 30, 11. https://doi.org/10.1021/acs.chemmater.8b02257. 

(43)  Anderson, G.; Schweitzer, B.; Anderson, R.; Gómez-Gualdrón, D. A. Attainable Volumetric Targets for 
Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning. J. 
Phys. Chem. C 2019, 123 (1), 120–130. https://doi.org/10.1021/acs.jpcc.8b09420. 

(44)  Anderson, R.; Gómez-Gualdrón, D. A. Increasing Topological Diversity during Computational 
“Synthesis” of Porous Crystals: How and Why. CrystEngComm 2019, 21 (10), 1653–1665. 
https://doi.org/10.1039/c8ce01637b. 

(45)  Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; 
Yildirim, T.; Farha, O. K.; Snurr, R. Q. Computational Design of Metal–Organic Frameworks Based on 
Stable Zirconium Building Units for Storage and Delivery of Methane. Chem. Mater. 2014, 26 (19), 
5632–5639. https://doi.org/10.1021/cm502304e. 

(46)  Bao, Y.; Martin, R. L.; Simon, C. M.; Haranczyk, M.; Smit, B.; Deem, M. W. In Silico Discovery of High 
Deliverable Capacity Metal–Organic Frameworks. J. Phys. Chem. C 2015, 119 (1), 186–195. 
https://doi.org/10.1021/jp5123486. 

(47)  Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-
Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 
2012, 149 (1), 134–141. https://doi.org/10.1016/j.micromeso.2011.08.020. 

(48)  Addicoat, M. A.; Coupry, D. E.; Heine, T. AuToGraFS: Automatic Topological Generator for 
Framework Structures. J. Phys. Chem. A 2014, 118 (40), 9607–9614. 
https://doi.org/10.1021/jp507643v. 

(49)  Boyd, P. G.; Woo, T. K. A Generalized Method for Constructing Hypothetical Nanoporous Materials of 
Any Net Topology from Graph Theory. CrystEngComm 2016, 18 (21), 3777–3792. 
https://doi.org/10.1039/C6CE00407E. 

(50)  Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; 
Farha, O. K.; Zhang, J.; Snurr, R. Q. Evaluating Topologically Diverse Metal–Organic Frameworks for 
Cryo-Adsorbed Hydrogen Storage. Energy Environ. Sci. 2016, 9 (10), 3279–3289. 
https://doi.org/10.1039/C6EE02104B. 

(51)  Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.; Kumar, S. G. H.; Collins, S. P.; Burns, T.; 
Woo, T. K.; Farha, O.; Snurr, R. Q.; et al. Inverse Design of Nanoporous Crystalline Reticular Materials 
with Deep Generative Models. Https://Doi.Org/10.26434/Chemrxiv.12186681.V2. 2020. 
https://doi.org/10.26434/CHEMRXIV.12186681.V2. 

(52)  Sadus, R. J. Molecular Simulation of Fluids: Theory, Algorithms, and Object-Orientation.; Elsevier: 
Amsterdam, 1999. 

(53)  Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, NY, 
1989. 

(54)  Frenkel, D.; Smit, B. Understanding Molecular Simulation : From Algorithms to Applications, 2nd ed.; 



33 

Academic Press, Inc.: Orlando, FL, 2001. 
(55)  Hill, T. L. An Introduction to Statistical Thermodynamics; Dover Publications, 1986. 
(56)  Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S. Molecular Simulation On the Inner Workings of 

Monte Carlo Codes On the Inner Workings of Monte Carlo Codes. Mol. Simul. 2013, 39, 14–15. 
https://doi.org/10.1080/08927022.2013.819102. 

(57)  Fernandez, M.; Boyd, P. G.; Daff, T. D.; Aghaji, M. Z.; Woo, T. K. Rapid and Accurate Machine Learning 
Recognition of High Performing Metal Organic Frameworks for CO 2 Capture. J. Phys. Chem. Lett. 
2014, 5 (17), 3056–3060. https://doi.org/10.1021/jz501331m. 

(58)  Martin, R. L.; Simon, C. M.; Smit, B.; Haranczyk, M. In Silico Design of Porous Polymer Networks: 
High-Throughput Screening for Methane Storage Materials. J. Am. Chem. Soc. 2014, 136 (13), 5006–
5022. https://doi.org/10.1021/ja4123939. 

(59)  Colón, Y. J.; Gómez-Gualdrón, D. A.; Snurr, R. Q. Topologically Guided, Automated Construction of 
Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications. Cryst. Growth Des. 
2017, 17 (11), 5801–5810. https://doi.org/10.1021/acs.cgd.7b00848. 

(60)  Boyd, P. G.; Moosavi, S. M.; Witman, M.; Smit, B. Force-Field Prediction of Materials Properties in 
Metal-Organic Frameworks. J. Phys. Chem. Lett. 2017, 8 (2), 357–363. 
https://doi.org/10.1021/acs.jpclett.6b02532. 

(61)  Thornton, A. W.; Simon, C. M.; Kim, J.; Kwon, O.; Deeg, K. S.; Konstas, K.; Pas, S. J.; Hill, M. R.; 
Winkler, D. A.; Haranczyk, M.; et al. Materials Genome in Action: Identifying the Performance Limits of 
Physical Hydrogen Storage. Chem. Mater. 2017, 29 (7), 2844–2854. 
https://doi.org/10.1021/acs.chemmater.6b04933. 

(62)  Bobbitt, N. S.; Snurr, R. Q. Molecular Simulation Molecular Modelling and Machine Learning for High-
Throughput Screening of Metal-Organic Frameworks for Hydrogen Storage Molecular Modelling and 
Machine Learning for High-Throughput Screening of Metal-Organic Frameworks for Hydrogen 
Storage. 2019. https://doi.org/10.1080/08927022.2019.1597271. 

(63)  Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G. E. 
Chemically Intuited, Large-Scale Screening of MOFs by Machine Learning Techniques. npj Comput. 
Mater. 2017, 3. https://doi.org/10.1038/s41524-017-0045-8. 

(64)  Broom, D. P.; Webb, C. J.; Hurst, K. E.; Parilla, P. A.; Gennett, T.; Brown, C. M.; Zacharia, R.; 
Tylianakis, E.; Klontzas, E.; Froudakis, G. E.; et al. Outlook and Challenges for Hydrogen Storage in 
Nanoporous Materials. Appl. Phys. A 2016, 122 (3), 151. https://doi.org/10.1007/s00339-016-9651-4. 

(65)  Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and 
Materials Science. Nature 2018, 559 (7715), 547–555. https://doi.org/10.1038/s41586-018-0337-2. 

(66)  Wahiduzzaman, M.; Walther, C. F. J.; Heine, T. Hydrogen Adsorption in Metal-Organic Frameworks: 
The Role of Nuclear Quantum Effects. J. Chem. Phys. 2014, 141 (6), 064708. 
https://doi.org/10.1063/1.4892670. 

(67)  Durette, D.; Bénard, P.; Zacharia, R.; Chahine, R. Investigation of the Hydrogen Adsorbed Density 
inside the Pores of MOF-5 from Path Integral Grand Canonical Monte Carlo at Supercritical and 
Subcritical Temperature. Sci. Bull. 2016, 61 (8), 594–600. https://doi.org/10.1007/s11434-016-1027-9. 

(68)  Fischer, M.; Hoffmann, F.; Fröba, M. Preferred Hydrogen Adsorption Sites in Various MOFs-A 
Comparative Computational Study. ChemPhysChem 2009, 10 (15), 2647–2657. 
https://doi.org/10.1002/cphc.200900459. 

(69)  Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent Verification of the Saturation Hydrogen Uptake 
in MOF-177 and Establishment of a Benchmark for Hydrogen Adsorption in Metal–Organic 
Frameworks. J. Mater. Chem. 2007, 17 (30), 3197. https://doi.org/10.1039/b703608f. 

(70)  Fischer, M.; Hoffmann, F.; Fröba, M. Preferred Hydrogen Adsorption Sites in Various MOFs-A 
Comparative Computational Study. ChemPhysChem 2009, 10 (15), 2647–2657. 
https://doi.org/10.1002/cphc.200900459. 



34 

(71)  Ahmed, A.; Siegel, D. J. HyMARC datahub https://datahub.hymarc.org/dataset/computational-
prediction-of-hydrogen-storage-capacities-in-mofs. 

(72)  Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. Machine Learning Using Combined 
Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal 
Organic Frameworks (MOFs). ACS Comb. Sci. 2017, 19 (10), 640–645. 
https://doi.org/10.1021/acscombsci.7b00056. 

(73)  Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. Large-Scale Quantitative Structure−Property 
Relationship (QSPR) Analysis of Methane Storage in Metal−Organic Frameworks. J. Phys. Chem. C 
2013, 117, 7681–7689. https://doi.org/10.1021/jp4006422. 

(74)  Fernandez, M.; Trefiak, N. R.; Woo, T. K. Atomic Property Weighted Radial Distribution Functions 
Descriptors of Metal–Organic Frameworks for the Prediction of Gas Uptake Capacity. J. Phys. Chem. C 
2013, 117 (27), 14095–14105. https://doi.org/10.1021/jp404287t. 

(75)  Fernandez, M.; Barnard, A. S. Geometrical Properties Can Predict CO 2 and N 2 Adsorption 
Performance of Metal–Organic Frameworks (MOFs) at Low Pressure. ACS Comb. Sci. 2016, 18 (5), 
243–252. https://doi.org/10.1021/acscombsci.5b00188. 

(76)  Nanoporous Materials Genome Center. http://www.chem.umn.edu/nmgc/. 
(77)  Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; 

Springer New York: New York, NY, 2009. https://doi.org/10.1007/978-0-387-84858-7. 
(78)  Thornton, A. W.; Simon, C. M.; Kim, J.; Kwon, O.; Deeg, K. S.; Konstas, K.; Pas, S. J.; Hill, M. R.; 

Winkler, D. A.; Haranczyk, M.; et al. Materials Genome in Action: Identifying the Performance Limits of 
Physical Hydrogen Storage. Chem. Mater. 2017, 29 (7), 2844–2854. 
https://doi.org/10.1021/acs.chemmater.6b04933. 

(79)  Dorugade, A. V; Kashid, D. N. Alternative Method for Choosing Ridge Parameter for Regression; 2010; Vol. 
4. 

(80)  Van Wieringen, W. N. Lecture Notes on Ridge Regression; 2020. 
(81)  Smola, A. J.; Smola, A. J.; Schölkopf, B. A Tutorial on Support Vector Regression. 2004. 
(82)  Bucior, B. J.; Bobbitt, N. S.; Islamoglu, T.; Goswami, S.; Gopalan, A.; Yildirim, T.; Farha, O. K.; Bagheri, 

N.; Snurr, R. Q. Energy-Based Descriptors to Rapidly Predict Hydrogen Storage in Metal-Organic 
Frameworks. Mol. Syst. Des. Eng. 2018. DOI 10.1039/c8me00050f. 
https://doi.org/10.1039/c8me00050f. 

(83)  Lan, Y.; Yan, T.; Tong, M.; Zhong, C. Large-Scale Computational Assembly of Ionic Liquid/MOF 
Composites: Synergistic Effect in the Wire-Tube Conformation for Efficient CO2/CH4 Separation. J. 
Mater. Chem. A 2019, 7 (20), 12556–12564. https://doi.org/10.1039/c9ta01752f. 

(84)  Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. High-Throughput Computational Screening of 
Multivariate Metal− Organic Frameworks (MTV-MOFs) for CO 2 Capture. J. Phys. Chem. Lett 2017, 8, 
19. https://doi.org/10.1021/acs.jpclett.7b02700. 

(85)  Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63 (1), 3–42. 
https://doi.org/10.1007/s10994-006-6226-1. 

(86)  Ahmed, A.; Siegel, D. J. HyMARC Sorbent Machine Learning Model: Predicting the hydrogen storage 
capacity of metal-organic frameworks via machine learning. https://sorbent-ml.hymarc.org/. 

(87)  Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gładysiak, A.; 
Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; et al. Data-Driven Design of Metal–Organic 
Frameworks for Wet Flue Gas CO2 Capture. Nature 2019, 576 (7786), 253–256. 
https://doi.org/10.1038/s41586-019-1798-7. 

(88)  Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gładysiak, A.; 
Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; et al. Data-Driven Design of Metal-Organic 
Frameworks for Wet Flue Gas CO2 Capture, Materials Cloud Archive 2018.0016/v3 (2019), Doi: 
10.24435/Materialscloud:2018.0016/V3. Nature 2019, 576 (7786), 253–256. 



35 

https://doi.org/10.1038/s41586-019-1798-7. 
(89)  R-WLLFHS: Https://Github.Com/Snurr-Group/Reduced-HMOF-Database. 
(90)  García-Holley, P.; Schweitzer, B.; Islamoglu, T.; Liu, Y.; Lin, L.; Rodriguez, S.; Weston, M. H.; Hupp, J. 

T.; Gómez-Gualdrón, D. A.; Yildirim, T.; et al. Benchmark Study of Hydrogen Storage in Metal–Organic 
Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett. 2018, 748–754. 
https://doi.org/10.1021/acsenergylett.8b00154. 

(91)  Wolpert, D. H.; Macready, W. G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 
1997, 1 (1). 

(92)  Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification And Regression Trees; Routledge, 
2017. https://doi.org/10.1201/9781315139470. 

(93)  Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an Application 
to Boosting. J. Comput. Syst. Sci. 1997, 55 (1), 119–139. https://doi.org/10.1006/jcss.1997.1504. 

(94)  Drucker, H. Improving Regressors using Boosting Techniques 
https://dl.acm.org/doi/10.5555/645526.657132 (accessed Nov 18, 2020). 

(95)  Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24 (2), 123–140. 
https://doi.org/10.1023/A:1018054314350. 

(96)  Breiman, L. Random Forests. Mach. Learn. 2001, 45 (1), 5–32. 
https://doi.org/10.1023/A:1010933404324. 

(97)  Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29 (5), 
1189–1232. 

(98)  Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines; 2001. 
(99)  Platt, J. C.; Platt, J. C. Probabilistic Outputs for Support Vector Machines and Comparisons to 

Regularized Likelihood Methods. Adv. LARGE MARGIN Classif. 1999, 61--74. 
(100)  Buhmann, M. D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: 

Cambridge, United Kingdom, 2002. 
(101)  Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A Library for Large Linear 

Classification; 2008; Vol. 9. 
(102)  Rifkin, R. M. .; Lippert, R. A. Notes on Regularized Least Squares; 2007. 
(103)  Altman, N. S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 

1992, 46 (3), 175–185. https://doi.org/10.1080/00031305.1992.10475879. 
(104)  Freund, Y.; Schapire, R. E. A Short Introduction to Boosting. J. Japanese Soc. Artif. Intell. 1999, 14 (5), 

771–780. 
(105)  Fernández-Delgado, M.; Sirsat, M. S.; Cernadas, E.; Alawadi, S.; Barro, S.; Febrero-Bande, M. An 

Extensive Experimental Survey of Regression Methods. Neural Networks 2019, 111, 11–34. 
https://doi.org/10.1016/J.NEUNET.2018.12.010. 

(106)  Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; 
Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. 
Res. 2011, 12, 2825–2830. 

(107)  Richard, M.-A.; Bénard, P.; Chahine, R. Gas Adsorption Process in Activated Carbon over 
a Wide Temperature Range above the Critical Point. Part 1: Modified Dubinin-Astakhov Model. 
Adsorption 2009, 15 (1), 43–51. https://doi.org/10.1007/s10450-009-9149-x. 

(108)  Gomez-Gualdron, D. A.; Wang, T. C.; García-Holley, P.; Sawelewa, R. M.; Argueta, E.; Snurr, R. Q.; 
Hupp, J. T.; Yildirim, T.; Farha, O. K. Understanding Volumetric and Gravimetric Hydrogen Adsorption 
Trade-off in Metal−Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9 (39), 33419–33428. 
https://doi.org/10.1021/acsami.7b01190. 

(109)  Düren, T.; Bae, Y.-S.; Snurr, R. Q. Using Molecular Simulation to Characterise Metal–Organic 
Frameworks for Adsorption Applications. Chem. Soc. Rev. 2009, 38 (5), 1237. 
https://doi.org/10.1039/b803498m. 



36 

(110)  Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal–Organic Frameworks. 
Chem. Soc. Rev. 2009, 38 (5), 1330. https://doi.org/10.1039/b802352m. 

(111)  Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-
Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 
2012, 149 (1), 134–141. https://doi.org/10.1016/j.micromeso.2011.08.020. 

(112)  Gómez-Gualdrón, D. A.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Application of 
Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. 
J. Am. Chem. Soc. 2016, 138 (1), 215–224. https://doi.org/10.1021/jacs.5b10266. 

(113)  Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data‐Driven Materials Science: Status, Challenges, and 
Perspectives. Adv. Sci. 2019, 1900808. https://doi.org/10.1002/advs.201900808. 

(114)  Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials 
Science. InfoMat 2019, 1 (3), 338–358. https://doi.org/10.1002/inf2.12028. 

(115)  Fanourgakis, G. S.; Gkagkas, K.; Tylianakis, E.; Klontzas, E.; Froudakis, G. A Robust Machine Learning 
Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials. J. Phys. Chem. A 2019, 
acs.jpca.9b03290. https://doi.org/10.1021/acs.jpca.9b03290. 

(116)  Panella, B.; Hirscher, M.; Roth, S. Hydrogen Adsorption in Different Carbon Nanostructures. Carbon N. 
Y. 2005, 43 (10), 2209–2214. https://doi.org/10.1016/j.carbon.2005.03.037. 

(117)  Kiyabu, S.; Lowe, J. S.; Ahmed, A.; Siegel, D. J. Computational Screening of Hydration Reactions for 
Thermal Energy Storage: New Materials and Design Rules. Chem. Mater. 2018, 30 (6), 2006–2017. 
https://doi.org/10.1021/acs.chemmater.7b05230. 

(118)  Moosavi, S. M.; Chidambaram, A.; Talirz, L.; Haranczyk, M.; Stylianou, K. C.; Smit, B. Capturing 
Chemical Intuition in Synthesis of Metal-Organic Frameworks. Nat. Commun. 2019, 10 (1), 539. 
https://doi.org/10.1038/s41467-019-08483-9. 

(119)  Zwillinger, D.; Kokoska, S.; Raton, B.; New, L.; Washington, Y. Standard Probability and Statistics Tables 
and Formulae CRC; 2000. 

(120)  Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9 (3), 10–20. 
https://doi.org/10.1109/MCSE.2007.58. 

(121)  Millman, K. J.; Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 2011, 13 (2), 9–12. 
https://doi.org/10.1109/MCSE.2011.36. 

(122)  Parrt, T.; Turgutlu, K. Rfpimp 1.3.4, Https://Github.Com/Parrt/Random-Forest-Importances. 
(123)  Machine, P.; With, L. Improve Machine Learning Results with Boosting , Bagging and Blending 

Ensemble Methods in Weka Start and Practice Machine Learning With Weka. 2017, 1–12. 
(124)  Here, S.; Products, B.; Contact, A. Classification And Regression Trees for Machine Learning. 2017, 1–

11. 
(125)  Witman, M.; Ling, S.; Grant, D. M.; Walker, G. S.; Agarwal, S.; Stavila, V.; Allendorf, M. D. Extracting an 

Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine 
Learning. J. Phys. Chem. Lett. 2020, 11 (1), 40–47. https://doi.org/10.1021/acs.jpclett.9b02971. 

(126)  Sturluson, A.; Huynh, M. T.; Kaija, A. R.; Laird, C.; Yoon, S.; Hou, F.; Feng, Z.; Wilmer, C. E.; Colón, Y. 
J.; Chung, Y. G.; et al. The Role of Molecular Modelling and Simulation in the Discovery and 
Deployment of Metal-Organic Frameworks for Gas Storage and Separation. Mol. Simul. 2019, 45 (14–
15), 1082–1121. https://doi.org/10.1080/08927022.2019.1648809. 

(127)  Barthel, S.; Alexandrov, E. V; Proserpio, D. M.; Smit, B. Distinguishing Metal−Organic Frameworks. 
2018. https://doi.org/10.1021/acs.cgd.7b01663. 

(128)  Altintas, C.; Avci, G.; Daglar, H.; Nemati Vesali Azar, A.; Erucar, I.; Velioglu, S.; Keskin, S. An Extensive 
Comparative Analysis of Two MOF Databases: High-Throughput Screening of Computation-Ready 
MOFs for CH 4 and H 2 Adsorption. J. Mater. Chem. A 2019, 7 (16), 9593–9608. 
https://doi.org/10.1039/C9TA01378D. 

(129)  Chen, T.; Manz, T. A. A Collection of Forcefield Precursors for Metal-Organic Frameworks. RSC Adv. 



37 

2019, 9 (63), 36492–36507. https://doi.org/10.1039/c9ra07327b. 
(130)  Ahmed, A.; Siegel, D. J. Machine Learning Models for Predicting Hydrogen Storage in Metal-Organic 

Frameworks. Figshare. Software. Https://Doi.Org/10.6084/M9.Figshare.14173520.V1. 2021. 
https://doi.org/10.6084/m9.figshare.14173520. 

(131)  Pinheiro, M.; Martin, R. L.; Rycroft, C. H.; Jones, A.; Iglesia, E.; Haranczyk, M. Characterization and 
Comparison of Pore Landscapes in Crystalline Porous Materials. J. Mol. Graph. Model. 2013, 44, 208–
219. https://doi.org/10.1016/j.jmgm.2013.05.007. 

(132)  Pinheiro, M.; Martin, R. L.; Rycroft, C. H.; Haranczyk, M. High Accuracy Geometric Analysis of 
Crystalline Porous Materials. CrystEngComm 2013, 15 (37), 7531–7538. 
https://doi.org/10.1039/c3ce41057a. 

(133)  Ongari, D.; Boyd, P. G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate Characterization of 
the Pore Volume in Microporous Crystalline Materials. 2017. 
https://doi.org/10.1021/acs.langmuir.7b01682. 

(134)  Sarkisov, L.; Bueno-Perez, R.; Sutharson, M.; Fairen-jimenez, D. Material Informatics with PoreBlazer 
v4.0 and CSD MOF Database. 2020. https://doi.org/10.26434/CHEMRXIV.12923558.V1. 

(135)  Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, 
T.; Gómez-Gualdrón, D. A.; et al. Balancing Volumetric and Gravimetric Uptake in Highly Porous 
Materials for Clean Energy. Science (80-. ). 2020, 368 (6488), 297–303. 
https://doi.org/10.1126/science.aaz8881. 

(136)  Camp, J. S.; Stavila, V.; Allendorf, M. D.; Prendergast, D.; Haranczyk, M. Critical Factors in 
Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks Critical Factors in 
Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks. 2018. 
https://doi.org/10.1021/acs.jpcc.8b04021. 

(137)  Churchard, A. J.; Banach, E.; Borgschulte, A.; Caputo, R.; Chen, J. C.; Clary, D.; Fijalkowski, K. J.; 
Geerlings, H.; Genova, R. V.; Grochala, W.; et al. A Multifaceted Approach to Hydrogen Storage. 
Physical Chemistry Chemical Physics. Royal Society of Chemistry October 14, 2011, pp 16955–16972. 
https://doi.org/10.1039/c1cp22312g. 

(138)  MacRae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, 
G. P.; Stevens, J. S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and 
Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. https://doi.org/10.1107/S1600576719014092. 

(139)  Manos, M. J.; Markoulides, M. S.; Malliakas, C. D.; Papaefstathiou, G. S.; Chronakis, N.; Kanatzidis, M. 
G.; Trikalitis, P. N.; Tasiopoulos, A. J. A Highly Porous Interpenetrated Metal-Organic Framework from 
the Use of a Novel Nanosized Organic Linker. Inorg. Chem. 2011, 50 (22), 11297–11299. 
https://doi.org/10.1021/ic201919q. 

(140)  Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; 
O’Keeffe, M.; Kim, J.; et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science (80-. ). 2010, 329 
(5990), 424–428. https://doi.org/10.1126/science.1192160. 

(141)  Yuan, D.; Zhao, D.; Sun, D.; Zhou, H.-C. An Isoreticular Series of Metal-Organic Frameworks with 
Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. Angew. Chemie Int. Ed. 
2010, 49 (31), 5357–5361. https://doi.org/10.1002/anie.201001009. 

(142)  Yan, Y.; Telepeni, I.; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A. J.; Lewis, W.; Walker, G. S.; 
Allan, D. R.; et al. Metal-Organic Polyhedral Frameworks: High H2 Adsorption Capacities and Neutron 
Powder Diffraction Studies. J. Am. Chem. Soc. 2010, 132 (12), 4092–4094. 
https://doi.org/10.1021/ja1001407. 

(143)  Karagiaridi, O.; Bury, W.; Tylianakis, E.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Opening Metal-
Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through 
Solvent-Assisted Linker Exchange. Chem. Mater. 2013, 25 (17), 3499–3503. 
https://doi.org/10.1021/cm401724v. 



38 

(144)  Zheng, X.; Huang, Y.; Duan, J.; Wang, C.; Wen, L.; Zhao, J.; Li, D. A Microporous Zn(II)-MOF with 
Open Metal Sites: Structure and Selective Adsorption Properties. Dalt. Trans. 2014, 43 (22), 8311–
8317. https://doi.org/10.1039/c4dt00307a. 

(145)  He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen Carriers. Nat. Rev. Mater. 2016, 1. 
https://doi.org/10.1038/natrevmats.2016.59. 

(146)  Li, G.; Kobayashi, H.; Taylor, J. M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; 
Matsumura, S.; et al. Hydrogen Storage in Pd Nanocrystals Covered with a Metal–Organic Framework. 
Nat. Mater. 2014 138 2014, 13 (8), 802–806. https://doi.org/10.1038/nmat4030. 

(147)  Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen Storage: Recent Improvements and Industrial 
Perspectives. Int. J. Hydrogen Energy 2017, 42 (11), 7254–7262. 
https://doi.org/10.1016/J.IJHYDENE.2016.03.178. 

(148)  Zhang, X.; Leng, Z.; Gao, M.; Hu, J.; Du, F.; Yao, J.; Pan, H.; Liu, Y. Enhanced Hydrogen Storage 
Properties of MgH2 Catalyzed with Carbon-Supported Nanocrystalline TiO2. J. Power Sources 2018, 
398, 183–192. https://doi.org/10.1016/J.JPOWSOUR.2018.07.072. 

(149)  Veenstra, M. Yang, J.; Siegel, D. J.; Ming Y. Ford/BASF-SE/UM Activities in Support of the Hydrogen 
Storage Engineering Center of Excellence. 
Https://Www.Hydrogen.Energy.Gov/Pdfs/Progress13/Iv_b_7_veenstra_2013.Pdf (Accessed 2020-
09-03), United States Dep. 

(150)  Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen 
Storage in Microporous Metal-Organic Frameworks. Science (80-. ). 2003, 300 (5622), 1127–1129. 

(151)  Song, C.; Wang, P.; Makse, H. A. A Phase Diagram for Jammed Matter. Nat. 2008 4537195 2008, 453 
(7195), 629–632. https://doi.org/10.1038/nature06981. 

(152)  Jaoshvili, A.; Esakia, A.; Porrati, M.; Chaikin, P. M. Experiments on the Random Packing of Tetrahedral 
Dice. Phys. Rev. Lett. 2010, 104 (18), 185501. 
https://doi.org/10.1103/PHYSREVLETT.104.185501/FIGURES/4/MEDIUM. 

(153)  Dutta, A.; Koh, K.; Wong-Foy, A. G.; Matzger, A. J. Porous Solids Arising from Synergistic and 
Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation. 
Angew. Chemie Int. Ed. 2015, 54 (13), 3983–3987. https://doi.org/10.1002/anie.201411735. 

(154)  Cai, J.; Rao, X.; He, Y.; Yu, J.; Wu, C.; Zhou, W.; Yildirim, T.; Chen, B.; Qian, G. A Highly Porous NbO 
Type Metal–Organic Framework Constructed from an Expanded Tetracarboxylate. Chem. Commun. 
2014, 50 (13), 1552–1554. https://doi.org/10.1039/C3CC48747D. 

(155)  Schnobrich, J. K.; Lebel, O.; Cychosz, K. A.; Dailly, A.; Wong-Foy, A. G.; Matzger, A. J. Linker-Directed 
Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. J. Am. 
Chem. Soc. 2010, 132 (39), 13941–13948. https://doi.org/10.1021/ja107423k. 

(156)  Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and 
Highly Porous Metal-Organic Framework. Nature 1999, 402 (6759), 276–279. 
https://doi.org/10.1038/46248. 

(157)  DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-Economic 
Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage. Energy and Fuels 2017, 
31 (2), 2024–2032. https://doi.org/10.1021/acs.energyfuels.6b02510. 

(158)  Rowsell, J. L. C.; Yaghi, O. M. Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angew. 
Chemie Int. Ed. 2005, 44 (30), 4670–4679. https://doi.org/10.1002/anie.200462786. 

(159)  Koh, K.; Van Oosterhout, J. D.; Roy, S.; Wong-Foy, A. G.; Matzger, A. J. Exceptional Surface Area from 
Coordination Copolymers Derived from Two Linear Linkers of Differing Lengths. Chem. Sci. 2012, 3 
(8), 2429. https://doi.org/10.1039/c2sc20407j. 

(160)  Park, T. H.; Hickman, A. J.; Koh, K.; Martin, S.; Wong-Foy, A. G.; Sanford, M. S.; Matzger, A. J. Highly 
Dispersed Palladium(II) in a Defective Metal-Organic Framework: Application to C-H Activation and 
Functionalization. J. Am. Chem. Soc. 2011, 133 (50), 20138–20141. 



39 

https://doi.org/10.1021/JA2094316/SUPPL_FILE/JA2094316_SI_001.PDF. 
(161)  Koh, K.; Wong-Foy, A. G.; Matzger, A. J. A Crystalline Mesoporous Coordination Copolymer with High 

Microporosity. Angew. Chemie Int. Ed. 2008, 47 (4), 677–680. 
https://doi.org/10.1002/ANIE.200705020. 

(162)  Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. 
M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 
427 (6974), 523–527. https://doi.org/10.1038/nature02311. 

(163)  Pang, M.; Cairns, A. J.; Liu, Y.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Highly Monodisperse M III-
Based Soc -MOFs (M = in and Ga) with Cubic and Truncated Cubic Morphologies. J. Am. Chem. Soc. 
2012, 134 (32), 13176–13179. 
https://doi.org/10.1021/JA3049282/SUPPL_FILE/JA3049282_SI_001.PDF. 

(164)  Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology Design of 
Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133 (39), 
15506–15513. https://doi.org/10.1021/JA204233Q/SUPPL_FILE/JA204233Q_SI_001.PDF. 

(165)  The Choice Is Somewhat Arbitrary. There Is No Theory to Guide Optimal Selection of a Randomly 
Packed Bimodal Distribution of Spheres Much Less Guidance for Cuboid Particles. However, the Use of 
a Relatively Small Mass Frac-Tion of the Smaller Radius Parti. 

(166)  Mills, L. A.; Sinka, I. C. Effect of Particle Size and Density on the Die Fill of Powders. Eur. J. Pharm. 
Biopharm. 2013, 84 (3), 642–652. https://doi.org/10.1016/J.EJPB.2013.01.012. 

(167)  Zakhvatayeva, A.; Zhong, W.; Makroo, H. A.; Hare, C.; Wu, C. Y. An Experimental Study of Die Filling 
of Pharmaceutical Powders Using a Rotary Die Filling System. Int. J. Pharm. 2018, 553 (1–2), 84–96. 
https://doi.org/10.1016/J.IJPHARM.2018.09.067. 

(168)  Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.; 
Iversen, B. B. Elucidating Negative Thermal Expansion in MOF-5. J. Phys. Chem. C 2010, 114 (39), 
16181–16186. https://doi.org/10.1021/JP103212Z/SUPPL_FILE/JP103212Z_SI_002.ZIP. 

(169)  Purewal, J.; Veenstra, M.; Tamburello, D.; Ahmed, A.; Matzger, A. J.; Wong-Foy, A. G.; Seth, S.; Liu, Y.; 
Siegel, D. J. Estimation of System-Level Hydrogen Storage for Metal-Organic Frameworks with High 
Volumetric Storage Density, in Press 2019) DOI: 10.1016/j.Ijhydene.2019.04.082. Int. J. Hydrogen 
Energy 2019. https://doi.org/10.1016/J.IJHYDENE.2019.04.082. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 

 

Appendix A 

Additional information: Materials  
Development 
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ergy Institute, University of Michigan, Ann Arbor, MI 48109, United States 

 
 
 
Section S1. Details of MOF database reported earlier.1  
 
The database is publicly available at the HyMARC Data Hub2 

 
 

 
 
Section S2 Literature review of machine learning for gas storage in MOFs3–13 

Table S1. Database of MOF crystal structures, calculated crystallographic properties, and calculated usable H2 capacities. 

 

Source1 Available in 
database 

Zero accessible 
surface area 

H2 capacity evalu-
ated empirically 

H2 capacity eval-
uated with 

GCMC 

UM+CoRE+CSD17 15,235 2,950 12,285 12,799 

Mail-Order MOFs 112 4 108 112 
In Silico MOFs 2,816 154 2,662 466 

In Silico Surface MOFs 8, 885 283 8,602 1,058 
MOF-74 Analogs 61 0 61 61 

ToBaCCo 13,512 214 13,298 2,854 
Zr-MOFs 204 0 204 204 

NW Hypothetical MOFs 137,000 30,160 106,840 20,156 
UO Hypothetical MOFs 315,615 32,993 291,507 61,247 

In-house synthesized via hy-
pothetical design 18 0 18 5 

Total 493,458 66,758 426,700 98,962 
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Table S2. Summary of recent studies that use machine learning (ML) to predict gas adsorption in MOFs. ρcrys, vf, gsa, vsa, pv, mpd, 
lcd, pld represent single crystal density, void fraction, gravimetric surface area, volumetric surface area, pore volume, maximum pore 
diameter, largest cavity diameter, and pore limiting diameter, respectively. R2, AUE, and RMSE represent the coefficient of determi-
nation, Average Unsigned Error, and Root-Mean-Square Error, respectively. AUC = Area Under the Curve. LASSO: Least Absolute 
Shrinkage and Selection Operator; MLR: Multi-Linear Regression; SVM: Support Vector Machine; DT: Decision Tress; RF: Ran-
dom Forest; NN: Nearest Neighbors; GBM: Gradient Boosting Method; RBF: Radial Bias Function; PCA: Principal Component 
Analysis; ANN: Artificial Neural Network. 

Study Gas ML Features ML Method Properties Predicted Accuracy  

This work H2 ρcrys, gsa, vsa, vf, pv, lcd, pld Extremely Randomized 
Trees 

Deliverable H2 storage capacity 
between 5-100 bar at 77 K. 

UG at PS: R2 = 0.997; 
AUE = 0.14 wt. %; 
RMSE = 0.18 wt. %  
UV at PS: R2 = 0.984; 
AUE = 0.97 g-H2 L-1; 
RMSE = 1.40 g-H2 L-1 
UG at TPS: R2 = 0.997; 
AUE = 0.16 wt. %; 
RMSE = 0.23 wt. %  
UV at TPS: R2 = 0.967; 
AUE = 1.32 g-H2 L-1; 
RMSE = 1.92 g-H2 L-1 

Anderson et al. 
(2019)5 H2 

Epsilon, temperature, pressure, 
ρcrys, vf, vsa, mpd, lcd, alchemical 
catecholate site density, unit cell 
volume. 

Neural network 
Total volumetric H2 for pres-
sures 0.1, 1, 5, 35, 65, and 100 
bar at 77, 160, and 295 K 

AUE = 0.75 - 2.93 g-H2 
L-1 

Bucior et al. 
(2019)2 H2, CH4 Energetics of MOF-guest interac-

tions 
Multilinear regression 
with LASSO 

H2: Deliverable capacity 2 and 
100 bar at 77 K. 
CH4: Deliverable capacity be-
tween 5.8 and 65 bar at 298 K 

R2 = 0.96, AUE = 1.4 - 
3.4 g/L, RMSE = 3.1 - 
4.4 g/L 

Anderson et al. 
(2018)3 CO2 ρcrys, vf, gsa, vsa, mpd, lcd, topology MLR, SVM, DT, RF, 

NN, GBM CO2 capture R2 = 0.601- 0.934   

Pardakhti et al 
(2017)6 CH4 

ρcrys, vf, gsa, vsa, mpd, lcd 
interpenetration capacity, number 
of interpenetration framework, 19 
chemical descriptors 

DT, Poisson regression, 
SVM, and RF Total at 35 bar and 298 K R2 = 0.97 

Aghaji et al. 
(2016)5 

CO2, 
CO2/CH4 vf, gsa, lcd DT, SVM(RBF), 

Working capacity for the pres-
sure swing between 1 and 10 
atm at 298 K 

AUC = 0.889 to 0.953 

Fernandez & 
Barnard 
(2016)6 

CO2, N2 ρcrys, vf, gsa, vsa, mpd, lcd 
PCA, k-means clustering, 
archetypal analysis, DT, 
SVM, MLL, ANN, RF 

Total at 0.1 and 0.9 bar at 298 K ~94% 

Ohno & Mukae 
(2016)9 CH4 ρcrys, vf, gsa, vsa, mpd, and lcd 

 
GP regression, SVM re-
gression, NN, and LR Total at 35 bar and 298K. R2 = 0.79 

Simon e al. 
(2015)8 Xe/Kr ρcrys, vf, vsa, mpd, dpd, surface den-

sity, Voronoi energy RF Xe/Kr selectivity 

RMSE = 2.21 for 15,000 
unitless numbers be-
tween 0 and 35 
R2 not Reported 

Sezginel et al. 
(2015)11 CH4 ρcrys, vf, gsa, vsa, mpd, and lcd, pld, 

Qst 
MVL regression Total at 298 K and pressures in 

1 to 65 bar R2 =0.3 - 0.9 

Fernandez et al. 
(2014)10  CO2 AP-RDF SVM classification Total at P =0.15 & 1 bar at 298 

K 94.5% (classification) 

Fernandez et al. 
(2013)11  

CH4, CO2, 
N2 AP-RDF PCA,  MLR, and  SVM 

regression 
Total at low pressure (0.1-0.9 
bar) at 298 K ~70% - ~83% 

Fernandez et al. 
(2013)12  CH4 ρcrys, vf, gsa, vsa, mpd, lcd 

 
DT, MLR, and  SVM re-
gression 

Uptake at 1, 35, and 100 bar at 
298 K 

~90% at 1 bar (classifica-
tion);R2 (regression) = 
0.85 (35bar);R2 (regres-
sion)  = 0.93 (100 bar) 
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Section S3 Grand Canonical Monte Carlo (GCMC) calculations 
 
The pseudo-Feynman-Hibbs interatomic potential parameters of Fischer et al.14–16 were used to model H2 molecules. MOF-H2 interactions 
were calculated using Lorentz-Berthelot17,18 combination rules. MOFs were assumed to be rigid and were described using interatomic potential 
parameters from a generic19,20 force field. The RASPA package was used to evaluate H2 uptake via Grand Canonical Monte Carlo (GCMC). All 
calculations were carried out using a 12 Å cut-off radius with compensating long-range corrections.21,22 GCMC calculations for a given T,P 
condition were performed using 1000 initial cycles followed by a 1000 cycle production run. Each cycle consisted of translation, insertion, and 
deletion moves with equal probabilities.23 Further details can be found in our recent publication.1 
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Section S4 Benchmarking with experimental data1,24 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
Figure S2. Distribution of 6 crystallographic features in 3 different datasets used in this study. (a) pore volume, (b) single crystal 
density, (c) void fraction, (d) gravimetric surface area, (e) volumetric surface area, and (f) largest cavity diameter. 
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Figure S1. Comparison between experiments and GCMC calculations of H2 capacities for a benchmark set of open-metal-site MOFs for pressure 
swing operation: HKUST-1 (n), NOTT-112 (u), Cu-MOF-74 (�), NU-125 (p), NU-100/PCN-610 («).1,24 
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Section S5 Description of crystallographic features 
 

Skew and kurtosis were calculated using the scipy.stats module in the SciPy package.25–27 Skewness is calculated from the ratio of the third 
moment (m3) and the cube of the square root of second moment (m2) of a feature variable, 𝑠𝑘𝑒𝑤 = 𝜇! 𝜇"

!/"⁄ , where 𝜇$ =
(∑ (𝑥[𝑘] − 𝑥̅)$%&'()*+&

,-. 1/𝑛/01234/ is the i-th central moment, and 𝑥̅ is the mean of the feature variable.25–27 Kurtosis is the fourth central 
moment divided by the square of the second moment: 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝜇5 𝜇""⁄ . 25–28 

 

 
 
 
 
 
 
 
 
 
 

Table S3.  H2 storage capacities for a benchmark set of open metal site (OMS) MOFs. Calculated capacities were predicted using the 
pseudo-Feynman-Hibbs interatomic potential. Measured H2 storage data was compiled from García-Holley et al.24 and from earlier 
work performed by the present authors.1 ‘Expt.’ refers to measured capacities from the literature, ‘GCMC’ refers to predictions from 
the present study. 

CSD Ref-
code 

Common 
name 

OMS den-
sity 

Usable gravimetric capacity  
PS conditions 

Usable volumetric capacity 
PS conditions 

Å-3 (wt. %) (g-H2 L-1) 
 Expt.1,23 GCMC Expt.1,23 GCMC 

FQIQCEN HKUST-1 2.63 ´ 10-3 2.0 2.1 17 20.6 
FOPFAS NOTT-112 9.24 ´ 10-4 5.3 3.6 24 24.3 
LENKIA Cu-MOF-74 4.91 ´ 10-3 1.0 1.1 13 14.8 
REWNEO NU-125 1.09 ´ 10-3 4.1 4.1 24 27.2 
HABQUY
/GAGZEV 

NU-100/ 
PCN-610 4.47 ´ 10-4 10.1 10.8 35.5 37.1 
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Table S4. Statistics for the datasets used in this study.  
 

Feature Dataset type Minimum Maximum Mean Median % zero val-
ues Skew Kurtosis 

d 
(g cm-3) 

Training 0.03 5.18 0.76 0.62 0 1.84 5.64 
Test 0.03 3.97 0.76 0.61 0 1.79 4.96 
Unseen 0.04 4.7 0.84 0.76 0 1.37 3.81 

gsa 
(m

2 
g-1) 

Training 0 9750 3112.01 3516 10 -0.16 -0.80 
Test 0 9701 3137.82 3560 10 -0.16 -0.74 
Unseen 0 9671 2530.47 2529 13 0.16 -0.84 

vsa 
(m2 cm-3) 

Training 0 3995 1696.35 1912 10 -1.03 0.23 
Test 0 3966 1703.42 1918 10 -1.04 0.26 
Unseen 0 3482 1473.48 1736 13 -1.10 0.01 

vf 
Training 0 0.99 0.71 0.76 0 -1.38 2.19 
Test 0.01 0.99 0.71 0.76 0 -1.37 2.18 
Unseen 0 0.98 0.69 0.71 0 -0.70 0.34 

pv 
(cm3 g-1) 

Training 0 35.73 1.34 1.23 0 6.97 91.45 
Test 0.01 29.82 1.37 1.24 0 7.29 89.60 
Unseen 0 24.76 1.18 0.93 0 3.22 30.16 

lcd 
(Å) 

Training 0.4 71.6 10.14 9.2 0 2.45 11.94 
Test 0.4 66.2 10.21 9.3 0 2.49 11.95 
Unseen 0.4 69.9 10.41 9.4 0 1.27 3.61 

pld 
(Å) 

Training 0 71.5 7.86 7.5 0 2.81 19.54 
Test 0.1 57.7 7.91 7.6 0 2.84 18.43 
Unseen 0 68 7.45 6.9 0 1.21 5.39 
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Section S6 Machine learning work-flow 
 

 
Section S7 Metrics for ML accuracy 

 

The coefficient of determination (R2), average unsigned error (AUE), root-mean-squared error (RMSE), and median absolute error (MAE) 
are used to assess the accuracy of the various ML models with respect to GCMC calculations.  If the test/training set contains 𝑛/01234/ and 
𝑦$,7818  is the GCMC calculated H2 capacity of i-th sample and 𝑦$,13  is the corresponding ML model prediction, then R2, AUE, RMSE, and 
MAE are defined as follows:  

R"(𝑦7818 , 𝑦131 = 	>
∑ :;<,=>(>?;<,(*@

AB&'()*+&
<CD

∑ :;<,=>(>?;=>(>EEEEEEEEE@A
B&'()*+&
<CD

,                                                (1) 

AUE(𝑦7818 , 𝑦131 = 	
∑ F;<,=>(>?;<,(*F
B&'()*+&GD
<CH

%&'()*+&
                                                 (2) 

RMSE(𝑦7818 , 𝑦131 = 	>
∑ :;<,=>(>?;<,(*@

AB&'()*+&GD
<CH

%&'()*+&
,                                           (3) 

 
MAE(𝑦7818 , 𝑦131 = 𝑚𝑒𝑑𝑖𝑎𝑛(G𝑦.,7818 − 𝑦.,13G, … , G𝑦%,7818 − 𝑦%,13G1                      (4) 
  
where. 𝑦7818IIIIIII = (∑ 𝑦$,7818

%&'()*+&
$-. 1/𝑛/01234/.  

 
Kendal τ rank correlation coefficients were calculated using the scipy.stats module25–27 according to the definition of Kendall τ-b.29–31 
 

 
 
 
 
 
 
 

 

 
 
Figure S3. Machine learning work-flow as described in the text. 
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Section S8 Training set sizes 
 

 
Section S9 Performance comparison for ML algorithms 
 

 

Table S6. Performance of ML models in predicting usable gravimetric capacities under pressure swing conditions. R2, AUE, RSME, and MAE 
represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.  
 

ML model Model abbreviation Feature scaling method R2 AUE 
(wt. %) 

RMSE 
(wt. %) Kendal τ EV MAE 

Ada Boost AB unscaled 0.975 0.476 0.332 0.910 0.976 0.410 
Bagging with Decision Tree B/DT unscaled 0.997 0.141 0.037 0.959 0.997 0.110 
Bagging with Random Forest  B/RF unscaled 0.997 0.141 0.037 0.959 0.997 0.110 
Boosted Decision Trees BDT unscaled 0.997 0.136 0.037 0.963 0.997 0.100 
Decision Trees DT unscaled 0.995 0.180 0.065 0.949 0.995 0.100 
Extremely Randomized Trees ERT unscaled 0.997 0.136 0.034 0.961 0.997 0.104 
Gradient Boosting GB unscaled 0.997 0.158 0.045 0.955 0.997 0.123 
K-Nearest Neighbors  K-NN unscaled 0.983 0.346 0.226 0.900 0.983 0.260 
Linear Regression LR unscaled 0.987 0.307 0.170 0.915 0.987 0.241 
Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0.986 0.235 0.187 0.958 0.987 0.173 
Random Forest RF unscaled 0.997 0.141 0.037 0.959 0.997 0.110 
Ridge Regression RR unscaled 0.987 0.307 0.170 0.915 0.987 0.241 
Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0.986 0.236 0.187 0.958 0.987 0.174 
Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0.986 0.306 0.187 0.920 0.986 0.224 

 

Table S5.  Training set sizes.  
 

100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,300,400,500,600,700,800,900,1000, 1200, 1300,1400,1500,1600,1700, 
1800,1900,2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,13000,14000,15000,16000,17000,18000,19000, 
20000,21000,22000,23000,24000,25000,26000,27000,28000,29000,30000,31000,32000,33000,34000,35000,36000,37000, 
38000,39000,40000,41000,42000,43000,44000,45000,46000,47000,48000,49000,50000,51000,52000,53000,54000,55000, 
56000,57000,58000,59000,60000,61000,62000,63000,64000,65000,66000,67000,68000,69000,70000,71000,72000,73000,74000 
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Table S7. Performance of ML models in predicting usable volumetric capacities under pressure swing condition. R2, AUE, RSME, and MAE 
represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively. 
 

ML model Model abbreviation Feature scaling method R2 AUE 
(g -H2 L-1) 

RMSE  
(g -H2 L-1) Kendal τ EV MAE 

Ada Boost AB unscaled 0.936 2.258 7.732 0.873 0.938 1.983 

Bagging with Decision Tree B/DT unscaled 0.982 1.011 2.133 0.918 0.982 0.720 

Bagging with Random Forest  B/RF unscaled 0.983 0.997 2.048 0.919 0.983 0.710 

Boosted Decision Trees BDT unscaled 0.983 0.979 2.104 0.922 0.983 0.700 

Decision Trees DT unscaled 0.971 1.298 3.568 0.895 0.971 0.900 

Extremely Randomized Trees ERT unscaled 0.984 0.967 1.960 0.922 0.984 0.692 

Gradient Boosting GB unscaled 0.980 1.104 2.454 0.911 0.980 0.829 

K-Nearest Neighbors  K-NN unscaled 0.913 2.378 10.517 0.794 0.913 1.760 

Linear Regression LR unscaled 0.917 2.403 10.045 0.829 0.917 1.981 

Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0.949 1.899 6.137 0.858 0.951 1.549 

Random Forest RF unscaled 0.982 1.011 2.156 0.918 0.982 0.720 

Ridge Regression RR unscaled 0.917 2.404 10.046 0.829 0.917 1.980 

Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0.951 1.836 5.957 0.863 0.954 1.468 

Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0.910 2.398 10.905 0.846 0.913 1.902 

 

Table S8. Performance of ML models in predicting usable gravimetric capacities under temperature+pressure swing condition. R2, AUE, 
RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, 
respectively. 
 

ML model Model abbreviation Feature scaling method R2 
AUE 

(wt. %) 
RMSE 

(wt. %) Kendal τ EV MAE 

Ada Boost AB unscaled 0.970 0.557 0.497 0.939 0.970 0.459 

Bagging with Decision Tree B/DT unscaled 0.997 0.172 0.055 0.962 0.997 0.130 

Bagging with Random Forest  B/RF unscaled 0.997 0.171 0.054 0.961 0.997 0.130 

Boosted Decision Trees BDT unscaled 0.997 0.165 0.051 0.963 0.997 0.127 

Decision Trees DT unscaled 0.994 0.223 0.095 0.951 0.994 0.200 

Extremely Randomized Trees ERT unscaled 0.997 0.163 0.053 0.966 0.997 0.100 

Gradient Boosting GB unscaled 0.996 0.199 0.068 0.956 0.996 0.158 

K-Nearest Neighbors  K-NN unscaled 0.993 0.250 0.117 0.943 0.993 0.200 

Linear Regression LR unscaled 0.992 0.266 0.131 0.947 0.992 0.208 

Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0.991 0.285 0.155 0.952 0.991 0.217 

Random Forest RF unscaled 0.997 0.173 0.056 0.961 0.997 0.130 

Ridge Regression RR unscaled 0.992 0.266 0.131 0.947 0.992 0.208 

Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0.991 0.283 0.155 0.952 0.991 0.215 

Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0.968 0.451 0.535 0.948 0.973 0.345 

 

Table S9. Performance of ML models in predicting usable volumetric capacities under temperature+pressure swing condition. R2, AUE, 
RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, 
respectively. 
 

ML model Model abbreviation Feature scaling method R2 AUE 
(wt. %) 

RMSE 
(wt. %) Kendal τ EV MAE 

Ada Boost AB unscaled 0.911 2.387 9.954 0.752 0.912 1.877 

Bagging with Decision Tree B/DT unscaled 0.963 1.381 4.147 0.809 0.963 0.940 

Bagging with Random Forest  B/RF unscaled 0.964 1.380 4.042 0.809 0.964 0.940 

Boosted Decision Trees BDT unscaled 0.965 1.322 3.887 0.819 0.965 0.900 

Decision Trees DT unscaled 0.936 1.812 7.150 0.755 0.936 1.200 

Extremely Randomized Trees ERT unscaled 0.967 1.320 3.700 0.819 0.967 0.912 

Gradient Boosting GB unscaled 0.955 1.572 4.953 0.785 0.955 1.126 

K-Nearest Neighbors  K-NN unscaled 0.926 2.036 8.202 0.710 0.926 1.460 

Linear Regression LR unscaled 0.913 2.048 9.691 0.764 0.913 1.329 

Nu-Support Vector Machine with Radial Basis Function (RBF) Kernel Nu-SVM/RBF-K minmax scale 0.913 2.033 9.656 0.767 0.915 1.310 

Random Forest RF unscaled 0.963 1.383 4.169 0.809 0.963 0.940 

Ridge Regression RR unscaled 0.913 2.049 9.692 0.764 0.913 1.331 

Support Vector Machine Radial Basis Function (RBF) Kernel SVM/RBF-K minmax scale 0.913 2.029 9.641 0.768 0.915 1.307 

Support Vector Machine with Linear Kernel SVM/L-K minmax scale 0.907 2.117 10.404 0.767 0.911 1.390 
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Section S10 Performance of ML models under TPS conditions 
 
 
 
 
 
 

 

Figure S4. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H2 ca-
pacities in MOFs. Data is collected under TPS conditions on a test set of 24,674 MOFs. Different colors represent different categories of 
MOFs. Top (a-c) and bottom (d-f) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (a, d): Agree-
ment between ML and GCMC predictions. (b, e): Difference between ML and GCMC as a function of GCMC capacity. (c, f) Distribution 
of differences in predictions between ML and GCMC.  
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Section S11 Difference between ML and GCMC as a function of GCMC capacity for the 
training set 
 
 

 

Figure S5. Difference between ML and GCMC as a function of GCMC capacity for the training set of 74,201 MOFs. Performance of the 
Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H2 capacities in MOFs. Data is col-
lected under PS (a, c) and TPS (b,d). Different colors represent different categories of MOFs. Top (a, b) and bottom (c,d) panels illustrate 
performance for usable gravimetric and volumetric capacities, respectively.  
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Section S12 Effect of training set size on ML model accuracies 
 
 

Table S10. Parameters of the power-law fit, 𝜺(𝒎) = 𝜶𝒎𝜷 + 𝜸, where m is the size of the training dataset and 𝜺 represents 
the metric of accuracy (here average unsigned error or AUE). ⍺, β, and 𝛾 are the power-law coefficient, exponent, and con-
stant, respectively.  

 
Condition β (scaling factor) ⍺ (coefficient) 𝛾 (constant) 

UG - PS -0.43 1.19 0.13 
UG - TPS -0.37 0.92 0.16 
UV - PS -0.23 1.96 0.85 

UV - TPS -0.16 2.10 1.04 
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Section 13 Univariate Feature Importance32,33 

 

 

Figure S6. Performance of Extremely Randomized Trees ML models for predicting usable (a) gravimetric and (b) volumetric H2 capacity as 
a function of training set size (up to a dataset size of 10,000 MOFs) and the ratio of training to test set size. 100 different training sets ranging 
in size between 100 and 74,021 MOFs were examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using 
R2 (left axis, black) and the average unsigned error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law 
fit to the data. 
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Figure S7. Relative importance of seven features in predicting H2 storage in MOFs. Features are ranked 1(most important) through 7 (least 
important). Four different methods were used: Pearson’s correlation coefficient (r), Breiman and Fried-man’s tree-based algorithm as im-
plemented in Scikit-learn, and the permutation importance method as implemented in rfpimp package. (a) usable gravimetric and (b) vol-
umetric capacities for PS conditions. (c) usable gravimetric and (d) volumetric capacities for TPS conditions.  
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Section 14. GCMC verification of ML predictions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S11. MOFs predicted by ML to have high capacities under PS condition and whose performance was subsequently verified with 
GCMC. Here NW and UO represent Northwestern University and University of Ottawa databases.  

Name Source 

Density 

(g cm-3) 

Gravimetric 
surface area 

(m
2 

g-1) 

Volumetric sur-

face area   (m
2 

cm-3) 

Void frac-
tion 

Pore vol-
ume 

(cm
3 

g-1) 

Largest 
cavity di-

ameter (Å) 

Pore limit-
ing diame-

ter (Å) 

Usable gravi-
metric capacity 

(wt. %) 

Usable volumet-
ric 

capacity (g-H2 L-

1) 
GCMC ML GCMC ML 

mof_7642 ToBaCCo 0.30 5561 1695 0.89 2.93 12.8 11.8 11.1 10.3 40.5 37.4 
mof_7690 ToBaCCo 0.30 5715 1706 0.89 2.98 12.8 12.0 11.3 10.4 40.3 37.3 
mof_7594 ToBaCCo 0.40 5070 2031 0.86 2.15 11.2 9.7 8.6 7.9 39.9 37.0 
mof_7210 ToBaCCo 0.29 5936 1730 0.89 3.04 13.4 11.7 11.4 10.5 39.8 37.1 
mof_7738 ToBaCCo 0.25 6054 1502 0.90 3.64 14.5 13.5 13.0 12.0 39.7 37.0 

hypotheticalMOF_5045702_i_1_j_24_k_20_m_2 NW 0.31 5926 1820 0.88 2.87 16.0 11.0 10.9 10.1 39.7 37.2 
str_m3_o19_o19_f0_nbo.sym.1.out UO 0.31 5073 1583 0.90 2.88 17.7 12.9 10.8 10.1 39.7 37.1 

hypotheticalMOF_5037315_i_1_j_20_k_12_m_1 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.7 37.0 
hypotheticalMOF_5037467_i_1_j_20_k_12_m_8 NW 0.31 5860 1800 0.88 2.85 16.0 11.0 10.9 10.0 39.7 37.0 

str_m3_o5_o20_f0_nbo.sym.1.out UO 0.39 4772 1882 0.87 2.22 14.1 9.6 8.7 8.1 39.7 37.2 
hypothet-

icalMOF_5037563_i_1_j_20_k_12_m_13 NW 0.31 5897 1811 0.88 2.87 16.1 11.0 10.9 10.1 39.7 37.2 
hypothet-

icalMOF_5038404_i_1_j_20_k_20_m_15 NW 0.31 5870 1803 0.88 2.87 16.0 11.0 10.9 10.1 39.7 37.2 
hypotheticalMOF_5037379_i_1_j_20_k_12_m_4 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.6 37.0 
hypotheticalMOF_5037407_i_1_j_20_k_12_m_5 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.6 37.0 
hypotheticalMOF_5037479_i_1_j_20_k_12_m_9 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.6 37.0 

hypothet-
icalMOF_5055561_i_1_j_28_k_20_m_11 NW 0.31 5874 1804 0.88 2.87 16.0 11.0 10.9 10.1 39.6 37.2 

hypotheticalMOF_5037439_i_1_j_20_k_12_m_7 NW 0.31 5858 1799 0.88 2.85 16.0 11.0 10.9 10.0 39.6 37.0 
hypothet-

icalMOF_5037499_i_1_j_20_k_12_m_10 NW 0.31 5854 1798 0.88 2.85 16.0 11.0 10.9 10.0 39.6 37.0 
hypothet-

icalMOF_5037531_i_1_j_20_k_12_m_11 NW 0.31 5818 1787 0.88 2.86 16.0 11.0 10.9 10.0 39.6 37.0 
hypothet-

icalMOF_5037523_i_1_j_20_k_12_m_11 NW 0.31 5857 1799 0.88 2.86 16.0 11.0 10.9 10.0 39.6 37.1 
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Figure S8. Comparison of GCMC calculations with ML predictions for the 21,700 highest-capacity MOFs predicted by ML for PS condi-
tions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a, 
d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the 
difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (c, f) show the distribution of dif-
ferences from plots b and e. 
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Table S12. MOFs predicted by ML to have high capacities under TPS condition and whose performance was subsequently verified 
with GCMC. Here UO represents University of Ottawa database. 

Name Source Density 
(g cm-3) 

Gravimetric 
surface area 

(m
2 

g-1) 

Volumetric 
surface area 

(m
2 

cm-3) 

Void 
fraction 

Pore 
volume 

(cm
3 

g-1) 

Largest 
cavity di-

ameter 
(Å) 

Pore lim-
iting di-
ameter 

(Å) 

Usable gravi-
metric capac-

ity 
(wt. %) 

Usable volumet-
ric 

capacity 
(g-H2 L-1) 

GCMC ML GCMC ML 

str_m1_o1_o11_f0_pcu.sym.102.out UO 0.45 4352 1974 0.84 1.84 12.9 10.1 10.4 9.7 53.1 48.1 

str_m1_o1_o11_f0_pcu.sym.117.out UO 0.47 4162 1977 0.83 1.74 12.8 9.9 9.9 9.0 52.8 48.0 

str_m1_o1_o11_f0_pcu.sym.121.out UO 0.47 4263 2006 0.83 1.76 12.1 10.2 10.0 9.4 52.7 48.1 

str_m1_o1_o11_f0_pcu.sym.13.out UO 0.46 4326 2005 0.83 1.79 12.7 9.9 10.1 9.3 52.6 48.0 

str_m1_o1_o11_f0_pcu.sym.159.out UO 0.58 3703 2138 0.80 1.38 10.4 8.6 8.3 7.6 52.6 48.5 

str_m1_o1_o11_f0_pcu.sym.200.out UO 0.45 4359 1978 0.84 1.84 12.9 10.1 10.3 9.6 52.6 48.1 

str_m1_o1_o11_f0_pcu.sym.212.out UO 0.60 3417 2035 0.83 1.39 12.0 10.1 8.1 7.5 52.5 48.1 

str_m1_o1_o11_f0_pcu.sym.51.out UO 0.46 4330 2007 0.83 1.79 11.9 9.9 10.1 9.3 52.5 48.1 

str_m1_o1_o11_f0_pcu.sym.71.out UO 0.45 4436 1980 0.84 1.87 13.0 10.9 10.4 9.7 52.5 48.1 

str_m1_o1_o11_f0_pcu.sym.89.out UO 0.58 3507 2043 0.83 1.42 12.4 9.8 8.2 7.7 52.5 48.1 

str_m1_o1_o17_f0_pcu.sym.1.out UO 0.46 4283 1985 0.83 1.79 11.9 9.9 10.1 9.4 52.5 48.3 

str_m1_o1_o17_f0_pcu.sym.104.out UO 0.46 4439 2032 0.83 1.82 12.5 11.0 10.2 9.6 52.4 48.2 

str_m1_o1_o17_f0_pcu.sym.129.out UO 0.60 3585 2157 0.83 1.37 14.6 9.2 7.9 7.6 52.3 48.2 

str_m1_o1_o17_f0_pcu.sym.132.out UO 0.60 3438 2048 0.83 1.39 12.7 10.8 8.0 7.8 52.3 48.3 

str_m1_o1_o17_f0_pcu.sym.28.out UO 0.57 3732 2117 0.80 1.41 13.1 10.9 8.4 7.8 52.2 48.1 

str_m1_o1_o2_f0_pcu.sym.1.out UO 0.56 3615 2011 0.83 1.49 13.1 10.8 8.5 7.9 52.2 48.4 

str_m1_o1_o2_f0_pcu.sym.101.out UO 0.56 3549 1978 0.84 1.50 12.9 10.7 8.5 7.7 52.1 48.1 

str_m1_o1_o2_f0_pcu.sym.11.out UO 0.44 4487 1986 0.84 1.89 12.4 10.3 10.4 9.7 52.0 48.2 

str_m1_o1_o2_f0_pcu.sym.15.out UO 0.41 4983 2054 0.84 2.04 12.7 9.1 11.1 10.3 52.0 48.1 

str_m1_o1_o2_f0_pcu.sym.2.out UO 0.47 4179 1977 0.83 1.75 11.9 9.8 9.8 9.0 52.0 48.0 

MOF-5         7.8  51.9  
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Figure S9. Comparison of GCMC calculations with ML predictions for the 7,901 highest-capacity MOFs predicted by ML for TPS condi-
tions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a, 
d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the 
difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (c, f) show the distribution of dif-
ferences from plots b and e. 
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Table S13. Differences between ML-predicated and GCMC-calculated H2 storage capacities of unseen MOFs at PS and 
TPS  
conditions. Overprediction and underprediction mean ML predicted values are greater and smaller than those of GCMC  
calculated actual values, respectively.   

 

Statistics 

Pressure swing 
Temperature + pres-

sure swing 

UG 
(wt. %) 

UV 
(g-H2 L-

1) 

UG 
(wt. %) 

UV 
(g-H2 L-1) 

Largest overprediction 1.67 3.36 0.94 4.93 
Largest underprediction -0.96 -4.46 -1.0 -6.59 
Average unsigned error 0.24 0.66 0.24 1.28 

Standard deviation 0.20 0.53 0.17 0.99 
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Performance for 508 feature combinations  
 
d = Single crystal density (g/cm3); pv = Pore volume (cm3/g); vf = void fraction; gsa = Gravimetric sur-
face area (m2/g); vsa = Volumetric surface area (m2/cm3); lcd = Largest cavity diameter (Å); pld = Pore 
limiting diameter (Å) 
 

 
      
      

Combination of features Number of features R2 Average Unsigned Error, AUE (wt.%) Root-Mean-Square_Error, RMSE (wt.%) Kendall !
 pv 1 0.991 0.27 0.35 0.925
 d 1 0.981 0.37 0.48 0.891
 vf 1 0.971 0.39 0.61 0.910
 gsa 1 0.798 0.90 1.52 0.788
 pld 1 0.721 1.13 1.82 0.711
 lcd 1 0.719 1.32 1.86 0.655
 vsa 1 0.073 2.12 3.48 0.314
 d, pv 2 0.995 0.19 0.26 0.947
 vf, pv 2 0.994 0.19 0.27 0.945
 d, vf 2 0.994 0.20 0.27 0.943
 pv, lcd 2 0.992 0.24 0.32 0.931
 pv, pld 2 0.990 0.26 0.35 0.924
 gsa, pv 2 0.988 0.29 0.40 0.914
 d, lcd 2 0.987 0.31 0.42 0.908
 vsa, pv 2 0.986 0.30 0.41 0.911
 d, pld 2 0.982 0.35 0.46 0.894
 gsa, vsa 2 0.979 0.38 0.52 0.886
 d, gsa 2 0.977 0.41 0.56 0.882
 gsa, vf 2 0.976 0.38 0.56 0.900
 d, vsa 2 0.975 0.41 0.56 0.878
 vf, lcd 2 0.973 0.37 0.58 0.906
 vf, pld 2 0.973 0.38 0.61 0.905
 vsa, vf 2 0.966 0.43 0.66 0.889
 gsa, lcd 2 0.954 0.47 0.76 0.882
 gsa, pld 2 0.907 0.69 1.07 0.823
 lcd, pld 2 0.838 0.88 1.44 0.777
 vsa, lcd 2 0.812 0.97 1.54 0.734
 vsa, pld 2 0.803 1.01 1.58 0.731
 d, pv, lcd 3 0.996 0.18 0.24 0.949
 vf, pv, lcd 3 0.995 0.17 0.24 0.948
 vsa, vf, pv 3 0.995 0.19 0.25 0.945
 gsa, vsa, pv 3 0.995 0.18 0.26 0.947
 d, vf, lcd 3 0.995 0.18 0.25 0.948
 d, pv, pld 3 0.995 0.20 0.26 0.944
 d, gsa, pv 3 0.995 0.19 0.26 0.944
 gsa, vf, pv 3 0.995 0.19 0.26 0.945
 d, vf, pv 3 0.995 0.19 0.26 0.946
 d, vsa, pv 3 0.995 0.19 0.26 0.944
 d, gsa, vf 3 0.994 0.20 0.28 0.942
 gsa, vsa, vf 3 0.994 0.19 0.27 0.945
 vf, pv, pld 3 0.994 0.20 0.27 0.941
 d, vsa, vf 3 0.994 0.20 0.28 0.941
 d, vf, pld 3 0.994 0.20 0.27 0.943
 vsa, pv, lcd 3 0.993 0.21 0.30 0.936
 gsa, pv, lcd 3 0.993 0.22 0.31 0.935
 pv, lcd, pld 3 0.993 0.22 0.31 0.932
 vsa, pv, pld 3 0.991 0.25 0.34 0.928
 gsa, pv, pld 3 0.991 0.25 0.33 0.927
 gsa, vsa, lcd 3 0.989 0.27 0.37 0.920
 gsa, vf, lcd 3 0.988 0.26 0.38 0.931
 d, gsa, lcd 3 0.988 0.28 0.39 0.917
 d, vsa, lcd 3 0.987 0.29 0.40 0.916
 d, lcd, pld 3 0.987 0.30 0.41 0.909
 gsa, vsa, pld 3 0.985 0.32 0.43 0.906
 gsa, vf, pld 3 0.985 0.30 0.44 0.916
 d, gsa, pld 3 0.985 0.33 0.45 0.903
 d, vsa, pld 3 0.984 0.33 0.45 0.900
 d, gsa, vsa 3 0.977 0.38 0.52 0.886
 gsa, lcd, pld 3 0.975 0.33 0.55 0.916
 vsa, vf, lcd 3 0.970 0.40 0.62 0.893
 vf, lcd, pld 3 0.969 0.40 0.63 0.893
 vsa, vf, pld 3 0.967 0.42 0.65 0.891
 vsa, lcd, pld 3 0.927 0.62 0.99 0.835
 d, vsa, pv, lcd 4 0.997 0.16 0.21 0.954
 gsa, vf, pv, lcd 4 0.997 0.15 0.21 0.955
 vsa, vf, pv, lcd 4 0.997 0.15 0.21 0.954
 d, gsa, pv, lcd 4 0.997 0.16 0.21 0.955
 vsa, vf, pv, pld 4 0.996 0.16 0.22 0.953
 gsa, vf, pv, pld 4 0.996 0.16 0.22 0.953
 d, pv, lcd, pld 4 0.996 0.16 0.21 0.955
 d, gsa, pv, pld 4 0.996 0.17 0.22 0.952
 vf, pv, lcd, pld 4 0.996 0.15 0.21 0.955
 d, vsa, pv, pld 4 0.996 0.17 0.22 0.950
 d, gsa, vf, lcd 4 0.996 0.16 0.22 0.953
 gsa, vsa, pv, lcd 4 0.996 0.17 0.24 0.950
 d, vf, pv, lcd 4 0.996 0.17 0.23 0.951
 gsa, vsa, vf, lcd 4 0.996 0.16 0.24 0.953
 d, vsa, vf, lcd 4 0.996 0.16 0.23 0.953
 gsa, vsa, vf, pld 4 0.996 0.17 0.23 0.952
 gsa, vsa, pv, pld 4 0.995 0.18 0.24 0.949
 d, gsa, vf, pv 4 0.995 0.18 0.25 0.946
 d, vsa, vf, pld 4 0.995 0.17 0.24 0.951
 gsa, vsa, vf, pv 4 0.995 0.18 0.24 0.947
 d, vsa, vf, pv 4 0.995 0.18 0.24 0.946
 d, gsa, vsa, pv 4 0.995 0.18 0.25 0.947
 d, gsa, vf, pld 4 0.995 0.18 0.25 0.949
 d, vf, lcd, pld 4 0.995 0.16 0.26 0.954
 d, vf, pv, pld 4 0.995 0.19 0.26 0.945
 vsa, pv, lcd, pld 4 0.995 0.19 0.27 0.944
 d, gsa, vsa, vf 4 0.994 0.19 0.26 0.943
 gsa, pv, lcd, pld 4 0.994 0.20 0.27 0.941
 gsa, vf, lcd, pld 4 0.992 0.22 0.32 0.943
 gsa, vsa, lcd, pld 4 0.992 0.24 0.33 0.929
 d, gsa, lcd, pld 4 0.992 0.24 0.33 0.932
 d, vsa, lcd, pld 4 0.991 0.24 0.33 0.930
 d, gsa, vsa, lcd 4 0.988 0.27 0.38 0.919
 d, gsa, vsa, pld 4 0.985 0.32 0.44 0.905
 vsa, vf, lcd, pld 4 0.976 0.36 0.56 0.907
 gsa, vf, pv, lcd, pld 5 0.997 0.14 0.19 0.959
 d, vf, pv, lcd, pld 5 0.997 0.15 0.20 0.956
 d, gsa, vf, pv, lcd 5 0.997 0.15 0.20 0.957
 d, gsa, pv, lcd, pld 5 0.997 0.15 0.20 0.957
 vsa, vf, pv, lcd, pld 5 0.997 0.14 0.20 0.957
 d, vsa, vf, pv, lcd 5 0.997 0.15 0.20 0.956
 d, gsa, vf, lcd, pld 5 0.996 0.15 0.21 0.957
 d, gsa, vsa, pv, lcd 5 0.996 0.16 0.21 0.954
 d, vsa, vf, lcd, pld 5 0.996 0.15 0.21 0.956
 d, vsa, pv, lcd, pld 5 0.996 0.15 0.21 0.956
 gsa, vsa, vf, lcd, pld 5 0.996 0.15 0.22 0.955
 d, gsa, vsa, pv, pld 5 0.996 0.17 0.22 0.952
 gsa, vsa, vf, pv, lcd 5 0.996 0.15 0.21 0.954
 d, vsa, vf, pv, pld 5 0.996 0.15 0.21 0.954
 d, gsa, vsa, vf, lcd 5 0.996 0.16 0.22 0.954
 d, gsa, vf, pv, pld 5 0.996 0.16 0.22 0.954
 d, gsa, vsa, vf, pld 5 0.996 0.16 0.22 0.952
 gsa, vsa, vf, pv, pld 5 0.996 0.16 0.24 0.953
 gsa, vsa, pv, lcd, pld 5 0.995 0.17 0.23 0.951
 d, gsa, vsa, vf, pv 5 0.995 0.18 0.25 0.948
 d, gsa, vsa, lcd, pld 5 0.991 0.23 0.32 0.932
 d, gsa, vf, pv, lcd, pld 6 0.997 0.14 0.19 0.959
 d, gsa, vsa, vf, pv, lcd 6 0.997 0.15 0.21 0.957
 gsa, vsa, vf, pv, lcd, pld 6 0.997 0.14 0.20 0.958
 d, gsa, vsa, pv, lcd, pld 6 0.997 0.15 0.20 0.957
 d, vsa, vf, pv, lcd, pld 6 0.997 0.14 0.20 0.959
 d, gsa, vsa, vf, lcd, pld 6 0.996 0.15 0.21 0.956
 d, gsa, vsa, vf, pv, pld 6 0.996 0.16 0.22 0.954
 d, gsa, vsa, vf, pv, lcd, pld 7 0.997 0.14 0.19 0.959

Usable gravimetric H2 capacity (wt.%) 

under pressure  swing (PS) between 100 and 5 bar at 77K
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Combination of features Number of features R2 Average Unsigned Error, AUE (g/L) Root-Mean-Square_Error, RMSE (g/L) Kendall !
 vf 1 0.966 1.45 2.05 0.895
 pv 1 0.923 2.28 3.09 0.815
 d 1 0.882 2.79 3.78 0.776
 gsa 1 0.861 3.14 4.09 0.719
 pld 1 0.817 3.61 4.74 0.678
 lcd 1 0.716 4.45 5.90 0.643
 vsa 1 0.532 5.87 7.57 0.418
 vf, lcd 2 0.978 1.15 1.65 0.907
 d, pv 2 0.972 1.35 1.84 0.891
 vf, pld 2 0.970 1.32 1.88 0.893
 vf, pv 2 0.967 1.40 2.01 0.887
 d, vf 2 0.966 1.41 2.04 0.888
 vsa, vf 2 0.964 1.45 2.10 0.885
 gsa, vf 2 0.955 1.65 2.33 0.867
 pv, lcd 2 0.934 2.08 2.82 0.819
 d, lcd 2 0.923 2.25 3.09 0.806
 pv, pld 2 0.923 2.26 3.08 0.804
 gsa, lcd 2 0.921 2.28 3.10 0.797
 vsa, pv 2 0.905 2.48 3.41 0.789
 d, pld 2 0.903 2.51 3.45 0.785
 gsa, pv 2 0.901 2.48 3.47 0.792
 gsa, vsa 2 0.895 2.67 3.59 0.774
 lcd, pld 2 0.891 2.67 3.64 0.763
 gsa, pld 2 0.876 2.92 3.90 0.737
 d, vsa 2 0.875 2.85 3.91 0.754
 d, gsa 2 0.870 2.90 3.98 0.752
 vsa, lcd 2 0.864 2.90 4.05 0.716
 vsa, pld 2 0.845 3.17 4.32 0.691
 vsa, vf, lcd 3 0.976 1.23 1.72 0.900
 d, pv, lcd 3 0.975 1.27 1.73 0.895
 d, vf, lcd 3 0.974 1.23 1.77 0.898
 vf, pv, lcd 3 0.973 1.24 1.82 0.899
 gsa, vf, lcd 3 0.973 1.27 1.83 0.898
 gsa, vsa, pv 3 0.972 1.33 1.86 0.894
 d, vf, pv 3 0.971 1.34 1.88 0.894
 vsa, vf, pld 3 0.971 1.31 1.87 0.894
 vf, lcd, pld 3 0.971 1.25 1.89 0.898
 gsa, vsa, vf 3 0.970 1.33 1.91 0.895
 d, gsa, pv 3 0.970 1.40 1.92 0.884
 vsa, vf, pv 3 0.969 1.34 1.96 0.893
 d, pv, pld 3 0.968 1.41 1.96 0.885
 gsa, vf, pld 3 0.968 1.36 1.95 0.890
 d, vsa, pv 3 0.968 1.43 1.98 0.882
 d, gsa, vf 3 0.968 1.42 2.00 0.886
 gsa, vf, pv 3 0.967 1.37 1.99 0.891
 d, vsa, vf 3 0.967 1.39 2.00 0.888
 vf, pv, pld 3 0.966 1.42 2.02 0.885
 d, vf, pld 3 0.966 1.42 2.04 0.886
 vsa, pv, lcd 3 0.955 1.72 2.35 0.844
 gsa, pv, lcd 3 0.950 1.80 2.46 0.842
 gsa, lcd, pld 3 0.950 1.81 2.45 0.838
 vsa, lcd, pld 3 0.947 1.86 2.53 0.821
 gsa, vsa, lcd 3 0.946 1.86 2.53 0.831
 pv, lcd, pld 3 0.945 1.86 2.57 0.837
 d, gsa, lcd 3 0.943 1.92 2.64 0.825
 d, vsa, lcd 3 0.942 1.93 2.63 0.823
 vsa, pv, pld 3 0.938 2.03 2.74 0.821
 gsa, pv, pld 3 0.935 2.04 2.83 0.823
 d, lcd, pld 3 0.931 2.11 2.90 0.815
 gsa, vsa, pld 3 0.930 2.18 2.93 0.810
 d, gsa, pld 3 0.926 2.23 3.01 0.800
 d, vsa, pld 3 0.924 2.25 3.03 0.798
 d, gsa, vsa 3 0.887 2.71 3.71 0.770
 gsa, vf, lcd, pld 4 0.981 1.07 1.54 0.913
 d, vsa, vf, lcd 4 0.980 1.10 1.58 0.911
 d, pv, lcd, pld 4 0.979 1.15 1.60 0.905
 vf, pv, lcd, pld 4 0.979 1.10 1.59 0.910
 d, vsa, pv, lcd 4 0.978 1.18 1.63 0.902
 d, gsa, vf, lcd 4 0.978 1.12 1.63 0.910
 vsa, vf, pv, lcd 4 0.978 1.10 1.63 0.912
 d, gsa, pv, lcd 4 0.978 1.18 1.64 0.903
 vsa, vf, lcd, pld 4 0.978 1.11 1.63 0.909
 d, vf, lcd, pld 4 0.977 1.11 1.66 0.910
 gsa, vf, pv, lcd 4 0.977 1.13 1.66 0.909
 d, gsa, vf, pld 4 0.977 1.17 1.67 0.906
 d, vsa, vf, pld 4 0.977 1.17 1.67 0.907
 gsa, vf, pv, pld 4 0.977 1.18 1.70 0.905
 gsa, vsa, vf, lcd 4 0.976 1.14 1.70 0.907
 gsa, vsa, vf, pld 4 0.976 1.18 1.70 0.906
 d, vsa, pv, pld 4 0.976 1.22 1.71 0.900
 d, gsa, pv, pld 4 0.975 1.22 1.73 0.899
 d, vf, pv, lcd 4 0.975 1.20 1.74 0.902
 vsa, vf, pv, pld 4 0.975 1.19 1.75 0.906
 gsa, vsa, pv, lcd 4 0.974 1.27 1.77 0.894
 d, vsa, vf, pv 4 0.973 1.30 1.83 0.897
 d, gsa, vsa, pv 4 0.972 1.34 1.86 0.894
 gsa, vsa, pv, pld 4 0.971 1.31 1.86 0.894
 gsa, vsa, vf, pv 4 0.971 1.29 1.85 0.896
 d, gsa, vf, pv 4 0.971 1.31 1.88 0.896
 d, vf, pv, pld 4 0.970 1.36 1.92 0.889
 d, gsa, vsa, vf 4 0.968 1.35 1.96 0.892
 vsa, pv, lcd, pld 4 0.968 1.46 1.98 0.868
 gsa, vsa, lcd, pld 4 0.963 1.58 2.14 0.858
 d, vsa, lcd, pld 4 0.961 1.59 2.17 0.857
 d, gsa, lcd, pld 4 0.960 1.60 2.20 0.854
 gsa, pv, lcd, pld 4 0.957 1.63 2.28 0.854
 d, gsa, vsa, lcd 4 0.946 1.90 2.58 0.829
 d, gsa, vsa, pld 4 0.929 2.19 2.95 0.808
 vsa, vf, pv, lcd, pld 5 0.983 1.00 1.45 0.920
 d, gsa, vf, lcd, pld 5 0.982 1.01 1.46 0.918
 gsa, vf, pv, lcd, pld 5 0.982 1.03 1.48 0.917
 gsa, vsa, vf, lcd, pld 5 0.982 1.04 1.50 0.918
 d, vsa, vf, pv, lcd 5 0.982 1.04 1.48 0.917
 d, vsa, vf, lcd, pld 5 0.982 1.02 1.50 0.916
 d, vf, pv, lcd, pld 5 0.981 1.04 1.51 0.916
 gsa, vsa, vf, pv, lcd 5 0.981 1.08 1.54 0.912
 d, gsa, pv, lcd, pld 5 0.980 1.10 1.54 0.908
 d, gsa, vsa, pv, lcd 5 0.980 1.14 1.57 0.906
 d, vsa, pv, lcd, pld 5 0.980 1.10 1.56 0.908
 d, gsa, vf, pv, lcd 5 0.980 1.08 1.57 0.912
 d, gsa, vf, pv, pld 5 0.979 1.12 1.59 0.911
 d, gsa, vsa, vf, lcd 5 0.979 1.11 1.61 0.910
 d, vsa, vf, pv, pld 5 0.978 1.13 1.63 0.911
 gsa, vsa, vf, pv, pld 5 0.977 1.16 1.67 0.908
 d, gsa, vsa, vf, pld 5 0.977 1.14 1.67 0.909
 d, gsa, vsa, pv, pld 5 0.975 1.23 1.74 0.900
 gsa, vsa, pv, lcd, pld 5 0.974 1.27 1.80 0.894
 d, gsa, vsa, vf, pv 5 0.974 1.25 1.78 0.900
 d, gsa, vsa, lcd, pld 5 0.963 1.56 2.11 0.859
 d, vsa, vf, pv, lcd, pld 6 0.983 1.00 1.46 0.918
 gsa, vsa, vf, pv, lcd, pld 6 0.982 1.01 1.47 0.918
 d, gsa, vsa, vf, lcd, pld 6 0.982 1.04 1.50 0.917
 d, gsa, vsa, vf, pv, lcd 6 0.981 1.06 1.52 0.914
 d, gsa, vf, pv, lcd, pld 6 0.981 1.03 1.51 0.916
 d, gsa, vsa, pv, lcd, pld 6 0.980 1.11 1.58 0.909
 d, gsa, vsa, vf, pv, pld 6 0.978 1.13 1.63 0.908
 d, gsa, vsa, vf, pv, lcd, pld 7 0.983 0.99 1.43 0.921

Usable volumetric H2 capacity (g/L)

 under pressure swing (PS) beteween 100 and 5 bar at 77K
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Combination of features Number of features R2 Average Unsigned Error, AUE (wt.%) Root-Mean-Square_Error, RMSE (wt.%) Kendall !
 pv 1 0.993 0.26 0.34 0.945
 d 1 0.986 0.36 0.47 0.926
 vf 1 0.950 0.59 0.88 0.871
 gsa 1 0.883 0.78 1.31 0.839
 pld 1 0.751 1.35 1.99 0.682
 lcd 1 0.682 1.69 2.28 0.597
 vsa 1 0.169 2.26 3.65 0.352
 d,  pv 2 0.994 0.23 0.31 0.949
 vf, pv 2 0.993 0.23 0.32 0.949
 gsa,  pv 2 0.993 0.25 0.33 0.944
 d,  vf 2 0.993 0.24 0.33 0.947
 vsa,  pv 2 0.993 0.25 0.33 0.943
 pv,  lcd 2 0.993 0.25 0.35 0.945
 pv,  pld 2 0.992 0.27 0.36 0.942
 d,  gsa 2 0.990 0.31 0.40 0.931
 d,  vsa 2 0.990 0.30 0.41 0.931
 d,  lcd 2 0.989 0.32 0.43 0.929
 d,  pld 2 0.987 0.34 0.45 0.925
 gsa,  vsa 2 0.987 0.32 0.46 0.929
 gsa,  vf 2 0.972 0.45 0.67 0.897
 gsa,  lcd 2 0.967 0.48 0.73 0.898
 vf, lcd 2 0.957 0.58 0.84 0.867
 vf, pld 2 0.956 0.58 0.85 0.864
 gsa,  pld 2 0.952 0.60 0.90 0.868
 vsa,  vf 2 0.941 0.67 0.96 0.838
 vsa,  pld 2 0.844 1.08 1.58 0.728
 lcd, pld 2 0.824 1.13 1.66 0.728
 vsa,  lcd 2 0.819 1.17 1.70 0.693
 d,  gsa,  pv 3 0.995 0.21 0.29 0.951
 gsa,  vsa,  pv 3 0.995 0.21 0.28 0.953
 gsa,  pv,  pld 3 0.995 0.21 0.28 0.952
 d,  vsa,  pv 3 0.995 0.22 0.29 0.949
 gsa,  vf, pv 3 0.995 0.21 0.29 0.950
 vsa,  pv,  lcd 3 0.995 0.21 0.30 0.952
 gsa,  pv,  lcd 3 0.994 0.22 0.30 0.950
 vsa,  vf, pv 3 0.994 0.22 0.31 0.950
 d,  pv,  lcd 3 0.994 0.22 0.30 0.951
 d,  gsa,  vf 3 0.994 0.23 0.30 0.949
 vsa,  pv,  pld 3 0.994 0.22 0.30 0.950
 gsa,  vsa,  vf 3 0.994 0.22 0.31 0.950
 vf, pv,  lcd 3 0.994 0.22 0.30 0.950
 d,  vf, pv 3 0.994 0.23 0.31 0.949
 d,  vf, lcd 3 0.994 0.22 0.31 0.950
 pv,  lcd, pld 3 0.994 0.23 0.32 0.947
 d,  vsa,  vf 3 0.994 0.23 0.31 0.948
 d,  gsa,  lcd 3 0.993 0.26 0.35 0.941
 d,  pv,  pld 3 0.993 0.25 0.34 0.942
 d,  vsa,  pld 3 0.993 0.26 0.35 0.941
 d,  gsa,  pld 3 0.993 0.26 0.34 0.942
 vf, pv,  pld 3 0.993 0.25 0.35 0.943
 d,  vf, pld 3 0.992 0.25 0.34 0.943
 gsa,  vsa,  pld 3 0.992 0.26 0.36 0.941
 d,  vsa,  lcd 3 0.992 0.26 0.36 0.940
 gsa,  vsa,  lcd 3 0.992 0.26 0.36 0.940
 d,  gsa,  vsa 3 0.990 0.29 0.39 0.932
 d,  lcd, pld 3 0.988 0.32 0.43 0.926
 gsa,  vf, pld 3 0.986 0.35 0.49 0.917
 gsa,  lcd, pld 3 0.984 0.35 0.51 0.924
 gsa,  vf, lcd 3 0.983 0.34 0.51 0.920
 vf, lcd, pld 3 0.954 0.60 0.87 0.856
 vsa,  vf, pld 3 0.950 0.62 0.90 0.847
 vsa,  vf, lcd 3 0.949 0.62 0.89 0.851
 vsa,  lcd, pld 3 0.905 0.83 1.23 0.802
 gsa,  vf, pv,  lcd 4 0.996 0.18 0.25 0.959
 d,  gsa,  pv,  lcd 4 0.996 0.18 0.25 0.959
 d,  vsa,  pv,  lcd 4 0.996 0.19 0.26 0.956
 gsa,  vsa,  pv,  lcd 4 0.996 0.20 0.26 0.956
 vsa,  vf, pv,  pld 4 0.996 0.19 0.26 0.956
 d,  vsa,  pv,  pld 4 0.996 0.20 0.26 0.956
 vsa,  vf, pv,  lcd 4 0.996 0.19 0.26 0.956
 vf, pv,  lcd, pld 4 0.996 0.19 0.26 0.957
 gsa,  pv,  lcd, pld 4 0.996 0.20 0.27 0.956
 gsa,  vsa,  vf, pv 4 0.996 0.20 0.27 0.953
 d,  gsa,  vf, pld 4 0.996 0.20 0.27 0.956
 d,  gsa,  vf, lcd 4 0.995 0.19 0.27 0.957
 d,  vsa,  vf, lcd 4 0.995 0.19 0.27 0.957
 d,  vsa,  vf, pld 4 0.995 0.20 0.27 0.955
 d,  gsa,  pv,  pld 4 0.995 0.19 0.27 0.956
 gsa,  vsa,  pv,  pld 4 0.995 0.20 0.27 0.955
 d,  pv,  lcd, pld 4 0.995 0.19 0.28 0.956
 vsa,  pv,  lcd, pld 4 0.995 0.20 0.27 0.956
 gsa,  vf, pv,  pld 4 0.995 0.19 0.27 0.957
 d,  vsa,  vf, pv 4 0.995 0.21 0.28 0.952
 d,  gsa,  vsa,  pv 4 0.995 0.21 0.28 0.953
 gsa,  vsa,  vf, lcd 4 0.995 0.20 0.28 0.955
 d,  vf, pv,  lcd 4 0.995 0.21 0.28 0.952
 d,  vf, lcd, pld 4 0.995 0.20 0.28 0.954
 gsa,  vsa,  vf, pld 4 0.995 0.20 0.29 0.955
 d,  gsa,  vf, pv 4 0.994 0.21 0.30 0.950
 d,  gsa,  vsa,  vf 4 0.994 0.22 0.30 0.951
 d,  vsa,  lcd, pld 4 0.994 0.24 0.32 0.947
 d,  gsa,  lcd, pld 4 0.994 0.23 0.31 0.947
 d,  vf, pv,  pld 4 0.993 0.25 0.33 0.944
 d,  gsa,  vsa,  pld 4 0.993 0.25 0.33 0.943
 gsa,  vsa,  lcd, pld 4 0.993 0.24 0.34 0.944
 d,  gsa,  vsa,  lcd 4 0.992 0.25 0.35 0.942
 gsa,  vf, lcd, pld 4 0.990 0.29 0.41 0.937
 vsa,  vf, lcd, pld 4 0.960 0.56 0.79 0.863
 gsa,  vf, pv,  lcd, pld 5 0.997 0.18 0.24 0.960
 d,  vsa,  pv,  lcd, pld 5 0.996 0.18 0.24 0.959
 d,  gsa,  vf, lcd, pld 5 0.996 0.18 0.25 0.959
 d,  gsa,  pv,  lcd, pld 5 0.996 0.18 0.25 0.960
 d,  gsa,  vf, pv,  lcd 5 0.996 0.18 0.25 0.959
 gsa,  vsa,  vf, pv,  lcd 5 0.996 0.18 0.25 0.958
 d,  gsa,  vf, pv,  pld 5 0.996 0.19 0.25 0.958
 gsa,  vsa,  vf, pv,  pld 5 0.996 0.19 0.26 0.958
 d,  vsa,  vf, pv,  pld 5 0.996 0.19 0.25 0.957
 d,  gsa,  vsa,  pv,  lcd 5 0.996 0.19 0.26 0.958
 d,  vf, pv,  lcd, pld 5 0.996 0.19 0.26 0.958
 d,  vsa,  vf, lcd, pld 5 0.996 0.18 0.25 0.960
 gsa,  vsa,  pv,  lcd, pld 5 0.996 0.19 0.26 0.957
 d,  vsa,  vf, pv,  lcd 5 0.996 0.18 0.26 0.959
 d,  gsa,  vsa,  pv,  pld 5 0.996 0.19 0.26 0.957
 d,  gsa,  vsa,  vf, lcd 5 0.996 0.19 0.26 0.957
 d,  gsa,  vsa,  vf, pld 5 0.996 0.20 0.27 0.955
 gsa,  vsa,  vf, lcd, pld 5 0.995 0.19 0.26 0.957
 d,  gsa,  vsa,  vf, pv 5 0.995 0.21 0.28 0.952
 vsa,  vf, pv,  lcd, pld 5 0.995 0.18 0.28 0.958
 d,  gsa,  vsa,  lcd, pld 5 0.994 0.23 0.31 0.948
 d,  gsa,  vsa,  vf, pv,  lcd 6 0.996 0.18 0.24 0.960
 d,  vsa,  vf, pv,  lcd, pld 6 0.996 0.18 0.24 0.961
 d,  gsa,  vf, pv,  lcd, pld 6 0.996 0.17 0.25 0.960
 d,  gsa,  vsa,  pv,  lcd, pld 6 0.996 0.18 0.24 0.959
 d,  gsa,  vsa,  vf, pv,  pld 6 0.996 0.19 0.25 0.957
 d,  gsa,  vsa,  vf, lcd, pld 6 0.996 0.18 0.25 0.960
 gsa,  vsa,  vf, pv,  lcd, pld 6 0.996 0.18 0.27 0.960
 d,  gsa,  vsa,  vf, pv,  lcd, pld 7 0.997 0.17 0.24 0.961

Usable gravimetric H2 capacity (wt.%) under

 temperature+pressure swing (TPS) between 100bar
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Combination of features Number of features R2 Average Unsigned Error, AUE (g/L) Root-Mean-Square_Error, RMSE (g/L) Kendall !
 vf 1 0.907 2.18 3.25 0.703
 pv 1 0.872 2.62 3.78 0.639
 gsa 1 0.833 2.93 4.31 0.616
 vsa 1 0.819 3.14 4.55 0.663
 pld 1 0.788 3.37 4.80 0.539
 d 1 0.785 3.23 4.89 0.617
 lcd 1 0.689 4.09 5.86 0.412
 d,  pv 2 0.937 1.86 2.65 0.726
 vf, lcd 2 0.933 1.84 2.83 0.768
 vf, pv 2 0.929 1.90 2.80 0.727
 vf, pld 2 0.924 2.00 2.90 0.710
 vsa,  vf 2 0.920 2.03 3.02 0.732
 d,  vf 2 0.907 2.03 3.21 0.725
 vsa,  pv 2 0.901 2.38 3.38 0.696
 gsa,  vf 2 0.897 2.38 3.40 0.654
 vsa,  pld 2 0.894 2.39 3.46 0.694
 gsa,  pv 2 0.886 2.50 3.57 0.661
 vsa,  lcd 2 0.883 2.42 3.61 0.689
 pv,  lcd 2 0.881 2.52 3.66 0.667
 gsa,  lcd 2 0.879 2.58 3.75 0.675
 d,  vsa 2 0.877 2.51 3.69 0.682
 pv,  pld 2 0.877 2.60 3.67 0.636
 gsa,  pld 2 0.876 2.65 3.70 0.638
 d,  gsa 2 0.871 2.62 3.88 0.677
 gsa,  vsa 2 0.850 2.60 4.07 0.688
 d,  lcd 2 0.843 2.82 4.24 0.669
 d,  pld 2 0.841 2.84 4.22 0.636
 lcd, pld 2 0.828 2.96 4.39 0.626
 d,  vsa,  pv 3 0.943 1.79 2.58 0.747
 gsa,  vf, pv 3 0.941 1.74 2.54 0.756
 vsa,  vf, pv 3 0.940 1.75 2.59 0.760
 d,  vf, lcd 3 0.939 1.78 2.67 0.761
 gsa,  vf, lcd 3 0.939 1.84 2.67 0.748
 d,  pv,  lcd 3 0.939 1.80 2.61 0.754
 d,  gsa,  pv 3 0.938 1.82 2.66 0.749
 d,  vf, pv 3 0.938 1.86 2.67 0.722
 vsa,  vf, pld 3 0.938 1.80 2.61 0.751
 vsa,  vf, lcd 3 0.935 1.78 2.71 0.753
 vf, pv,  lcd 3 0.934 1.80 2.75 0.767
 d,  pv,  pld 3 0.933 1.99 2.74 0.698
 vf, lcd, pld 3 0.932 1.88 2.82 0.754
 gsa,  vsa,  vf 3 0.930 1.82 2.81 0.761
 gsa,  vsa,  pv 3 0.927 1.87 2.84 0.763
 vsa,  pv,  pld 3 0.926 2.01 2.90 0.735
 d,  vf, pld 3 0.926 1.98 2.87 0.710
 vf, pv,  pld 3 0.925 1.99 2.85 0.706
 gsa,  vf, pld 3 0.922 2.02 2.93 0.700
 vsa,  pv,  lcd 3 0.919 2.02 3.01 0.742
 d,  gsa,  vf 3 0.919 1.90 3.00 0.746
 d,  vsa,  vf 3 0.917 1.95 3.07 0.751
 gsa,  pv,  pld 3 0.917 2.18 3.11 0.719
 vsa,  lcd, pld 3 0.915 2.00 3.04 0.742
 gsa,  vsa,  lcd 3 0.915 2.08 3.12 0.733
 gsa,  pv,  lcd 3 0.912 2.13 3.09 0.713
 d,  vsa,  pld 3 0.911 2.12 3.21 0.732
 gsa,  vsa,  pld 3 0.911 2.11 3.15 0.733
 d,  gsa,  pld 3 0.903 2.20 3.32 0.724
 d,  vsa,  lcd 3 0.902 2.16 3.33 0.737
 d,  gsa,  lcd 3 0.902 2.14 3.28 0.730
 gsa,  lcd, pld 3 0.898 2.25 3.31 0.717
 pv,  lcd, pld 3 0.886 2.42 3.63 0.695
 d,  gsa,  vsa 3 0.877 2.50 3.76 0.688
 d,  lcd, pld 3 0.865 2.64 3.98 0.675
 d,  gsa,  pv,  lcd 4 0.955 1.57 2.29 0.790
 d,  pv,  lcd, pld 4 0.953 1.57 2.29 0.776
 d,  gsa,  vf, lcd 4 0.953 1.53 2.31 0.792
 d,  gsa,  pv,  pld 4 0.952 1.61 2.34 0.781
 d,  vsa,  pv,  lcd 4 0.952 1.56 2.31 0.785
 d,  vsa,  pv,  pld 4 0.951 1.60 2.31 0.779
 gsa,  vf, pv,  lcd 4 0.951 1.55 2.36 0.800
 gsa,  vsa,  vf, pld 4 0.951 1.59 2.34 0.785
 gsa,  vsa,  vf, lcd 4 0.951 1.56 2.34 0.793
 vsa,  vf, pv,  lcd 4 0.951 1.54 2.34 0.796
 d,  vsa,  vf, lcd 4 0.951 1.54 2.35 0.795
 vsa,  vf, pv,  pld 4 0.950 1.60 2.37 0.791
 d,  gsa,  vf, pld 4 0.949 1.63 2.40 0.782
 vsa,  vf, lcd, pld 4 0.949 1.58 2.36 0.788
 gsa,  vf, lcd, pld 4 0.948 1.63 2.44 0.788
 vf, pv,  lcd, pld 4 0.948 1.60 2.38 0.792
 d,  vsa,  vf, pld 4 0.948 1.62 2.41 0.781
 d,  vsa,  vf, pv 4 0.947 1.70 2.46 0.769
 d,  gsa,  vf, pv 4 0.947 1.70 2.48 0.765
 gsa,  vf, pv,  pld 4 0.947 1.62 2.45 0.786
 d,  vf, lcd, pld 4 0.947 1.59 2.43 0.794
 gsa,  vsa,  vf, pv 4 0.946 1.70 2.45 0.769
 d,  vf, pv,  lcd 4 0.946 1.68 2.44 0.765
 d,  gsa,  vsa,  pv 4 0.945 1.70 2.47 0.760
 gsa,  vsa,  pv,  pld 4 0.938 1.74 2.61 0.773
 gsa,  vsa,  pv,  lcd 4 0.936 1.73 2.69 0.777
 d,  vf, pv,  pld 4 0.934 1.91 2.71 0.709
 d,  vsa,  lcd, pld 4 0.928 1.87 2.89 0.764
 vsa,  pv,  lcd, pld 4 0.927 1.86 2.90 0.766
 gsa,  pv,  lcd, pld 4 0.925 1.98 2.95 0.749
 d,  gsa,  lcd, pld 4 0.923 1.92 2.99 0.761
 d,  gsa,  vsa,  vf 4 0.920 1.90 3.04 0.759
 gsa,  vsa,  lcd, pld 4 0.920 1.90 2.97 0.760
 d,  gsa,  vsa,  lcd 4 0.909 2.11 3.23 0.732
 d,  gsa,  vsa,  pld 4 0.904 2.12 3.26 0.736
 vsa,  vf, pv,  lcd, pld 5 0.961 1.41 2.10 0.814
 d,  gsa,  vf, pv,  lcd 5 0.960 1.49 2.19 0.801
 d,  vf, pv,  lcd, pld 5 0.959 1.50 2.19 0.800
 d,  gsa,  pv,  lcd, pld 5 0.959 1.46 2.12 0.800
 gsa,  vf, pv,  lcd, pld 5 0.959 1.45 2.15 0.808
 d,  vsa,  vf, pv,  lcd 5 0.959 1.50 2.18 0.800
 d,  gsa,  vf, lcd, pld 5 0.958 1.45 2.18 0.803
 d,  vsa,  vf, lcd, pld 5 0.957 1.45 2.18 0.810
 d,  vsa,  pv,  lcd, pld 5 0.957 1.52 2.22 0.797
 d,  gsa,  vf, pv,  pld 5 0.956 1.54 2.24 0.790
 gsa,  vsa,  vf, pv,  lcd 5 0.956 1.51 2.20 0.794
 d,  vsa,  vf, pv,  pld 5 0.956 1.54 2.23 0.793
 gsa,  vsa,  vf, lcd, pld 5 0.953 1.48 2.29 0.809
 d,  gsa,  vsa,  vf, pld 5 0.951 1.62 2.42 0.792
 d,  gsa,  vsa,  pv,  lcd 5 0.950 1.56 2.38 0.787
 gsa,  vsa,  vf, pv,  pld 5 0.950 1.59 2.42 0.796
 d,  gsa,  vsa,  pv,  pld 5 0.949 1.62 2.37 0.774
 d,  gsa,  vsa,  vf, lcd 5 0.948 1.57 2.46 0.801
 d,  gsa,  vsa,  vf, pv 5 0.947 1.69 2.45 0.766
 gsa,  vsa,  pv,  lcd, pld 5 0.939 1.70 2.63 0.789
 d,  gsa,  vsa,  lcd, pld 5 0.922 1.86 2.94 0.762
 d,  gsa,  vf, pv,  lcd, pld 6 0.965 1.41 2.04 0.810
 d,  gsa,  vsa,  vf, lcd, pld 6 0.962 1.42 2.12 0.813
 d,  vsa,  vf, pv,  lcd, pld 6 0.960 1.42 2.12 0.810
 d,  gsa,  vsa,  vf, pv,  lcd 6 0.960 1.46 2.12 0.792
 gsa,  vsa,  vf, pv,  lcd, pld 6 0.959 1.45 2.15 0.805
 d,  gsa,  vsa,  pv,  lcd, pld 6 0.958 1.47 2.14 0.791
 d,  gsa,  vsa,  vf, pv,  pld 6 0.955 1.56 2.29 0.793
 d,  gsa,  vsa,  vf, pv,  lcd, pld 7 0.962 1.39 2.06 0.809

Usable volumetric H2 capacity (g/L)  

under temperature+pressure swing (TPS) between 100bar
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SI 1. MOF-5 cubic morphology size-controlled crystal synthesis and activation procedures 
 
The optimized different metal/ligand molar ratio (3.8:1, 2.3:1, 1.7:1, and 1.7: 1(twofold dilution)) were heated 
at 100 °C for 24 h, which resulted in four different crystal size distributions (MOF-5(2349), MOF-5(1500), 
MOF-5(808), and MOF-5(279)) of MOF-5 (see below for synthetic procedures) respectively.  
 

 
 
Scheme S1. Synthetic process for MOF-5 
 
 
MOF-5(2349): H2BDC (100.0 mg, 0.602 mmol), Zn(NO3)2.6H2O (680.0 mg, 2.286 mmol), and 10 mL of DEF 
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The 
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with 
DMF three times (3 × 20 mL) over 24h. The crystals were immersed in CH2Cl2 for 3 days, during which time the 
CH2Cl2 was replaced three times (3 × 20 mL). Once solvent exchange was complete, the crystals were isolated by 
decanting the CH2Cl2 and evacuating under dynamic vacuum (0.05 torr) for 24 h at room temperature. 
 
MOF-5(1500): H2BDC (100.0 mg, 0.602 mmol), Zn(NO3)2.6H2O (400.0 mg, 1.345 mmol), and 10 mL of DEF 
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The 
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with 
DMF three times (3 × 20 mL) over 24h. The crystals were immersed in CH2Cl2 for 3 days, during which time the 
CH2Cl2 was replaced three times (3 × 20 mL). Once solvent exchange was complete, the crystals were isolated by 
decanting the CH2Cl2 and evacuating under dynamic vacuum (0.05 torr) for 24 h at room temperature. 
 
MOF-5(808): H2BDC (50.0 mg, 0.301 mmol), Zn(NO3)2.6H2O (150.0 mg, 0.504 mmol), and 10 mL of DEF 
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The 
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with 
DMF three times (3 × 20 mL) over 24h. The crystals were immersed in CH2Cl2 for 3 days, during which time the 
CH2Cl2 was replaced three times (3 × 20 mL). Once solvent exchange was complete, the crystals were isolated by 
decanting the CH2Cl2 and evacuating under dynamic vacuum (0.05 torr) for 24 h at room temperature. 
 
MOF-5(279): H2BDC (25.0 mg, 0.151 mmol), Zn(NO3)2.6H2O (75.0 mg, 0.252 mmol), and 10 mL of DEF 
were added to a 20 mL vial. The mixture was sonicated for 15 minutes and heated to 100 °C for 24 hours. The 
resulting colorless cubic crystals were isolated by decanting the mother liquor and washing with washed with 
DMF three times (3 × 20 mL) over 24h. The crystals were immersed in CH2Cl2 for 3 days, during which time the 
CH2Cl2 was replaced three times (3 × 20 mL). Once solvent exchange was complete, the crystals were isolated by 
decanting the CH2Cl2 and evacuating under dynamic vacuum (0.05 torr) for 24 h at room temperature. 
 
 
SI 2. MOF-5 new morphologies synthesis and activation procedures 
It was found that introducing a polycarboxylate (See Figure S1) to the initial MOF-5 reaction mixture generates 
different shaped (octahedral, cuboctahedral, and spherical) crystals in 24 or 48 hours (Scheme S2). 
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Scheme S2. Synthetic process for different morphologies of MOF-5. 

 
 
Figure S1. Molecular structures of polycarboxylate linkers studied. oxalic acid (a), malonic acid (b), succinic acid 
(c), glutaric acid (d), adipic acid (e), suberic acid (f), trimesic acid (g), [1,1'-biphenyl]-3,4',5-tricarboxylic acid 
(h), 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB) (i), 2,4,6-tris(4-carboxyphenyl)aniline (NH2-H3BTB) (j), 5'-
((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (k), and 5'-(4-carboxyphenyl)-
[1,1':3',1''-terphenyl]-3,4'',5-tricarboxylic acid (l). 
Ditopic carboxylic acid (H2L) linkers: 
Introducing ditopic carboxylic acids (see Figure S1(a-f) and Table S2) to the MOF-5 initial reaction mixture af-
forded no change in MOF-5 cubic crystal morphology. It is known that some linear (aromatic) linkers can give 
rise to new phases incorporating zinc and two linkers,1 but in all cases examined here the predominant phase was 
MOF-5.  
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Table S2. Synthetic conditions of MOF-5 morphologies using ditopic linkers. 
S. No. H2BDC/ Zn(NO3)2.6H2O 

(mg (mmol)/ mg(mmol) 
Polycarbox-

ylate, 
mol% (mg) 

Solvent 
(DEF) 

Tempera-
ture/ time 

Observation 

1 100.0 (0.602)/ 500.0 (1.68) oxalic acid, 
 5.3 (3.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

2 100.0 (0.602)/ 500.0 
(1.681) 

oxalic acid, 
 10.6 (6.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

3 100.0 (0.602)/ 500.0 
(1.681) 

malonic acid,  
5.3 (3.5) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

4 100.0 (0.602)/ 500.0 
(1.681) 

malonic acid,  
10.6 (7.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

5 100.0 (0.602)/ 500.0 
(1.681) 

succinic acid, 
 5.3 (4.0)  

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

6 100.0 (0.602)/ 500.0 
(1.681) 

succinic acid,  
10.8 (9.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

7 100.0 (0.602)/ 500.0 
(1.681) 

glutaric acid,  
5.4 (4.5) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

8 100.0 (0.602)/ 500.0 
(1.681) 

glutaric acid,  
10.8 (9.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

9 100.0 (0.602)/ 500.0 
(1.681) 

adipic acid,  
5.4 (5.0)  

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

10 100.0 (0.602)/ 500.0 
(1.681) 

adipic acid,  
10.8 (10.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

11 100.0 (0.602)/ 500.0 
(1.681) 

suberic acid,  
5.4 (6.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

12 100.0 (0.602)/ 500.0 
(1.681) 

suberic acid,  
10.8 (12.0) 

10 mL 100 °C/ 24 h no change in MOF-
5 cubic morphology 

 
 
 
Tritopic carboxylic acid (H3L) linkers: 
The four tritopic linkers (trimesic acid, [1,1'-biphenyl]-3,4',5-tricarboxylic acid, 1,3,5-tris(4-carboxyphenyl)ben-
zene (H3BTB) and 2,4,6-tris(4-carboxyphenyl)aniline (NH2-H3BTB)) (Figure S1g-j) were screened in this 
study. Among these, the addition of H3BTB (i) and NH2-H3BTB (j) to the initial MOF-5 reagents mixture gen-
erated different shaped crystals (see below Table S3). 
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Table S3. Synthetic conditions for MOF-5-Oh(600), MOF-5-OC(856), and MOF-5-Oc(575) samples. 

Sample name H2BDC/ Zn(NO3)2.6H2O 
(mg (mmol)/ mg(mmol) 

Polycarboxylate 
mol% (mg) 

Sol-
vent 
(DEF
) 

Tempera-
ture/ time 

Observation 

1 (100.0 (0.602)/ 500.0 
(1.681) 

trimesic acid  
10.5 (15.0) 

10 mL 100 °C/ 48 h no change in 
MOF-5 cubic 
morphology 

2 (100.0 (0.602)/ 500.0 
(1.681) 

1,1'-biphenyl]-
3,4',5-tricarbox-
ylic acid,  
8.0 (15.0) 

10 mL 100 °C/ 48 h no change in 
MOF-5 cubic 
morphology 

MOF-5-
Oh(600) 

(100.0 (0.602)/ 500.0 
(1.681) 

H3BTB,  
3.6 (10.0) 

15 mL 100 °C/ 24 h octahedral 
(Oh) morphol-
ogy crystals ob-
tained 

MOF-5-
OC(856) 

(100.0 (0.602)/ 500.0 
(1.681) 

H3BTB,  
1.9 (5.0) 

10 mL 100 °C/ 24 h cuboctahedral 
(Oc) morphol-
ogy crystals ob-
tained 

MOF-5-
Oc(575) 

(100.0 (0.602)/ 500.0 
(1.681) 

NH2-H3BTB, 
 2.7 (7.5) 

10 mL 100 °C/ 24 h cuboctahedral 
(Oc) morphol-
ogy crystals ob-
tained 

 
Solvent exchange and activation:  
The resulting non-cubic morphology crystals of all three samples were isolated by decanting the mother liquor 
and were washed with DMF. Crystals were immersed in CH2Cl2 for 3 days, during which time the CH2Cl2 was 
replaced three times. Once solvent exchange was complete, the crystals were isolated by decanting the CH2Cl2 
and evacuation under dynamic vacuum (0.05 torr) for 24 h at room temperature.  
 
1H-NMR Spectroscopy analyses of digested non-cubic morphology samples: 
As prepared non-cubic morphology ((MOF-5-Oh(600), MOF-5-Oc(856), and MOF-5-Oc(575)) samples were 
digested in DCl+DMSO-d6 solution(Figure S2) and analyzed by NMR spectroscopy. In all three samples, the 
peaks corresponding to BDC and BTB/BTB-NH2 were observed (Figure S3a-c). Incorporation of these additives 
does not yield new phases as confirmed through PXRD (see details and Figure 2 in the main manuscript) and so 
the linkers must occupy defect sites.     
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Figure S2. Proton NMR spectrum for as synthesized three different MOF-5 morphology ((MOF-5-Oh(600), 
MOF-5-Oc(856), and MOF-5-Oc(575)) samples after digesting in DCl+DMSO-d6 solution. 

 
 
Figure S3a: Aromatic region enlarged 1H-NMR spectrum for an as prepared MOF-5-Oh(600) sample after di-
gesting in DCl+DMSO-d6 solution. 
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Figure S3b: Aromatic region enlarged 1H-NMR spectrum for an as prepared MOF-5-Oc(856) sample after di-
gesting in DCl+DMSO-d6 solution. 
 

 
 
Figure S3c: Aromatic region enlarged 1H-NMR spectrum for an as prepared MOF-5-Oc(575) sample after di-
gesting in DCl+DMSO-d6 solution. 
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Tetratopic carboxylic acid (H4L) linkers: 
The two tetratopic linkers 5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid and 5'-
(4-carboxyphenyl)-[1,1':3',1''-terphenyl]-3,4'',5-tricarboxylic acid (Figure S1k and S1l) were screened in this 
study and inclusion of both additives to the initial MOF-5 reagents mixture generated different shaped crystals 
(Figure S4). 
 
Table S4. Synthetic conditions for new morphology MOF-5 using H4L linkers.  

Sam-
ple 
name 

H2BDC/ Zn(NO3)2.6H2O 
(mg (mmol)/ mg(mmol) 

Polycarboxylate 
mol% (mg) 

Solvent 
(DEF) 

Tempera-
ture/time 

Observation 

1 100.0 (0.602)/ 500.0 
(1.681) 

5'-((3,5-dicar-
boxy-
phenyl)ethynyl)
-[1,1':3',1''-ter-
phenyl]-4,4''-di-
carboxylic acid,  
1.6 (5.0) 

10 mL 100 °C/ 24 h cuboctahedral 
(Oc) morphology 
crystals obtained 
(See Figure S2 a 
and b for optical 
image and PXRD 
analysis): 2986 
m2/g 

2 100.0 (0.602)/ 500.0 
(1.681) 

5'-((3,5-dicar-
boxy-
phenyl)ethynyl)
-[1,1':3',1''-ter-
phenyl]-4,4''-di-
carboxylic acid,  
6.6 (20.5) 

10 mL 100 °C/ 24 h spherical morphol-
ogy crystals ob-
tained (See Figure 
S2 a and b for opti-
cal image and 
PXRD analysis): 
2445 m2/g 

3 100.0 (0.602)/ 500.0 
(1.681) 

5'-(4-carboxy-
phenyl)-
[1,1':3',1''-ter-
phenyl]-3,4'',5-
tricarboxylic 
acid,  
5.0 (15.5) 

10 mL 100 °C/ 15 h spherical morphol-
ogy crystals ob-
tained (See Figure 
S2c and d for opti-
cal image and 
PXRD analysis): 
2675 m2/g 
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(a) 

 

 
(b) 

 

 
 

(c) 

 

 
(d) 

 
Figure S4. Optical images of different morphologies of MOF-5 crystals obtained by the addition of tetratopic 
linkers 5'-((3,5-dicarboxyphenyl)ethynyl)-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (a) and 5'-(4-carboxy-
phenyl)-[1,1':3',1''-terphenyl]-3,4'',5-tricarboxylic acid (b) to the reaction mixture of H2BDC and 
Zn(NO3)2·6H2O. The respective PXRD patterns are shown (b) and (d). 
Solvent exchange and activation:  
The resulting crystals of all four samples were isolated by decanting the mother liquid and were washed with DMF. 
Crystals were immersed in CH2Cl2 for 3 days, during which time the CH2Cl2 was replaced three times. Once sol-
vent exchange was complete, the crystals were isolated by decanting the CH2Cl2 and evacuation under dynamic 
vacuum (0.05 torr) for 24 h at room temperature.  
 
SI 3. Instrumental details 
Optical microscopy and scanning electron microscopy:  
Inverted Leica DMIL LED and Leica DM2500 LED optical microscopes were used to determine morphologies 
and suitable images collected and represented in Figure 1, 2 and S3. A JEOL JSM-7800FLV scanning electron 
microscope operating with an accelerating voltage of 10 kV was used to determine commercially produced MOF-
5 morphology (Figure 1). Crystal size distribution analysis graphs were processed using Image-Pro Premier and 
OriginPro 8 software. 
Powder X-ray diffraction 
Powder X-ray diffraction (PXRD) data of all samples of MOF-5 were collected on a PANalytical Empyrean dif-
fractometer in Bragg-Brentano geometry using Cu-Kα radiation (λ = 1.54187 Å), operating at 45 kV and 40 mA. 
The incident beam was equipped with a Bragg-BrentanoHD X-ray optic using fixed slits/soller slits. The detector 
was a silicon-based linear position sensitive X’Celerator Scientific operating in 1-D scanning mode. Data were 
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collected from 5 to 50° 2θ using a step size of 0.0083° and a count time of at least 10 s per step. Powder patterns 
were processed using Data Viewer PANalytical and OriginPro 8 software. 
Gas sorption measurements 
Sorption experiments were carried out using a NOVA e series 4200 surface area analyzer (Quantachrome Instru-
ments, Boynton Beach, Florida, USA). N2 (99.999%) was purchased from Cryogenic Gases and used as received. 
For N2 measurements, a glass sample cell was charged with ~30 mg sample and analyzed at 77 K. Sorption iso-
therms were collected in the NOVAwin software. 
1H-NMR measurement  
All 1H-NMR measurements were carried out on a Varian Vnmrs 700 (700 MHz (17.6 Tesla) spectrometer. All 
MOF-5 three different morphologies ((MOF-5-Oh(600), MOF-5-Oc(856), and MOF-5-Oc(575)) were digested 
in DCl+DMSO-d6 solution(500 µL DMSO-d6 + 50 µL of 35 wt % DCl in D2O.) 
 
 
SI 4. Packing density measurements 
A standardized value for the packing or tap density can be measured using DIN, ISO 787 Part II, ISO 3953, or 
ASTM B 527-93 using a jolting volumeter or tap density measurement instrument. By this method, we measured 
the tap density for all samples using a custom-built jolting volumeter. Tapping in the volumeter was carried out 
until the tap density of the sample being studied converged to a constant value. This typically required a minimum 
of 1,000 taps. The custom-built volumeter has a frequency of 3 taps/sec and included a 35 g weight on the powder 
within the graduated cylinder for containment and consistent tap density (Figure S5). All tap density measure-
ments were conducted under inert atmosphere in a glove box. There is an insignificant reduction (at most ~150 
m2/g) in surface area observed for all samples after packing density measurements.  

 
Figure S5. Packing density measurement with custom-built jolting volumeter. 
 
 
SI 5. Compaction measurements 
Hydrogen adsorption measurements at variable MOF-5 packing densities were performed by compacting the 
MOF sample directly within the sample cell to successively higher densities using Parr™ Pellet Press (Stainless 
steel punch, die holder and die with 1.27 cm dia. x 2.54 cm D die cavity, 17.8 cm L lever arm, 6.2 cm dia. steel 
cam). Commercial MOF-5, cubic size-controlled, and new morphology of MOF-5 crystals samples were loaded 
in the sample cell inside the glovebox and compacted to a specified density using a pellet press respectively. Here 
the applied force was on the order of 50 to 150 lbs., which corresponds to between 10 MPa and 30 MPa pressure, 
but the force applied will vary based on the press and sample geometry. MOF-5 samples were used for successive 
measurements without loading fresh MOF samples. The packing densities of the MOF sample were measured 
before and after each hydrogen sorption measurement and no change in density was detected. Hydrogen adsorp-
tion isotherms were measured at 77 K temperature using cryogenic liquid baths. These both MOF sample com-
paction and hydrogen storage measurements were performed based by the literature method.2 
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(a) MOF-5 commercial 

 

 
(b) MOF-5(2349) 

 

 
(c) MOF-5(1500) 

 

 
(d)MOF-5(808) 

 

 
(e) MOF-5(279) 

 

 
(f) MOF-5(2349):MOF-5(808), 7:1 mixture 

 
(g) MOF-5-Oh(600) 
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Figure S6. Excess H2 adsorption isotherms measured at 77 K for commercial MOF-5, MOF(2349), MOF-
5(1500), MOF-5(808), MOF-5(279), mixture of MOF-5(2349) and MOF-5(808), and MOF-5-Oh(600) of 
MOF-5 samples, after compacting to the specified densities.  
Table S5. Compacted density, excess H2 gas adsorption, density fraction and excess fraction values of all samples 
listed in the below table.  

 
MOF-5 commercial 

(Crystal density 0.594 g/cc) 
Den-
sity 

(g/cc) 
Excess 
(g/kg) 

Density 
Frac-
tion 

Excess 
Frac-
tion 

0.18 60.3000 0.3030 1 
0.21 59.9100 0.3471 0.9935 
0.25 59.8900 0.4209 0.9932 
0.30 59.3500 0.5051 0.9842 
0.34 58.3200 0.5724 0.9672 
0.39 55.0390 0.6566 0.9128 
0.45 52.4780 0.7576 0.8703 
0.56 46.2480 0.9428 0.7670 

 

 
MOF-5(2349) 

(Crystal density 0.594 g/cc) 
Den-
sity 
(g/cc) 

Excess 
(g/kg) 

Density 
Fraction 

Excess 
Fraction 

0.27 60.715 0.455 1.000 
0.33 60.043 0.556 1.000 
0.38 59.082 0.640 0.973 
0.42 58.478 0.707 0.963 
0.45 56.429 0.758 0.929 

 
 

 
MOF-5(1500) 

(Crystal density 0.594 g/cc) 
Den-
sity 

(g/cc) 
Excess 
(g/kg) 

Density 
Fraction 

Excess 
Frac-
tion 

0.29 63.1190 0.4848 1 
0.34 60.3152 0.5724 0.9556 
0.40 58.2855 0.6734 0.9234 
0.45 51.2119 0.7576 0.8114 
0.50 45.4286 0.8418 0.7197 

 

 
MOF-5(808) 

(Crystal density 0.594 g/cc) 
Den-
sity 

(g/cc) 
Excess 
(g/kg) 

Density 
Fraction 

Excess 
Fraction 

0.30 59.8360 0.5051 1.0000 
0.35 59.4718 0.5892 0.9939 
0.40 57.7560 0.6734 0.9652 
0.45 56.7518 0.7576 0.9485 
0.50 47.5289 0.8418 0.7943 

 

 
MOF-5(279) (Crystal density 0.594 

g/cc) 
Den-
sity 

(g/cc) 
Excess 
(g/kg) 

Density 
Fraction 

Excess 
Fraction 

0.30 60.2829 0.5051 1 
0.35 58.9213 0.5892 0.9774 
0.40 57.0589 0.6734 0.9465 
0.45 51.6274 0.7576 0.8564 
0.50 47.6547 0.8418 0.7905 

 
 

 
MOF-5(2349):MOF-5(808), 7:1 mix-

ture 
(Crystal density 0.594 g/cc) 

Density 
(g/cc) 

Excess 
(g/kg) 

Density 
Fraction 

Excess 
Frac-
tion 

0.28 55.4539 0.4714 1 
0.31 55.4456 0.5219 0.9998 
0.33 55.2989 0.5556 0.9972 
0.35 55.1540 0.5892 0.9946 
0.40 55.2989 0.6734 0.9972 
0.45 53.5454 0.7576 0.9656 
0.50 47.9200 0.8418 0.8641 

 

MOF-5-Oh(600) 
(Crystal density 0.594 g/cc) 
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Den-
sity 

(g/cc) 
Excess 
(g/kg) 

Density 
Fraction 

Excess 
Fraction 

0.27 56.2580 0.4545 1 
0.32 56.3276 0.5387 1.0012 
0.35 55.6004 0.5892 0.9883 
0.38 55.1372 0.6397 0.9801 
0.41 55.3312 0.6902 0.9835 
0.45 54.5163 0.7576 0.9690 
0.48 48.0933 0.8081 0.8549 
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