Emerging wild virus of native grass bioenergy feedstock is well–established in the Midwestern USA and associated with premature stand senescence
Journal Article
·
· Global Change Biology. Bioenergy
- Michigan State Univ., East Lansing, MI (United States); Department of Plant Biology, Michigan State
- Michigan State Univ., East Lansing, MI (United States); Pennsylvania State Univ. Extension, Mifflinburg, PA (United States)
- Michigan State Univ., East Lansing, MI (United States)
- Michigan State Univ., East Lansing, MI (United States); Agriculture Victoria (Australia)
- Michigan State Univ., East Lansing, MI (United States); Enza Zaden, Enkhuizen (The Netherlands)
- Michigan State Univ., East Lansing, MI (United States); Univ. of Georgia, Athens, GA (United States)
- Michigan State Univ., East Lansing, MI (United States); Michigan State Univ. Extension, Hart, MI (United States)
The North American native prairie grass Panicum virgatum (switchgrass) is a primary bioenergy feedstock candidate. Its widespread distribution and genetic diversity enable the possibility of developing this perennial grass for high production in a variety of conditions, including on marginal lands. A critical concern in feedstock development and deployment is the risk of novel pathogen emergence. Here we investigate the landscape-scale prevalence and epidemiology of a little-studied North American virus first detected in switchgrass and other grasses in bioenergy trials in the US Midwest. Switchgrass mosaic virus (SwMV, Genus Marafivirus, Family Tymoviridae) is transmitted by leafhoppers and phylogenetically sister to Maize rayado fino virus, a significant pathogen of maize in parts of the Americas. Our goal was to determine whether SwMV is uniquely limited to specific bioenergy trials or well-established and circulating more broadly. We used molecular diagnostics to quantify naturally occurring SwMV infection in leafhoppers and switchgrass in naturalistic stands throughout a large Midwestern landscape, and quantified leafhopper abundances and stand performance. Our analysis revealed that this apparently wild virus is well-established and widespread. Infection was present at nearly all sites, across diverse landscape contexts, with prevalences ranging as high as 33%–60%. Infection appeared to accumulate and persist in stands over time. It was associated with increases in premature stand senescence but not with reductions in stand height. Although wild viruses are believed to evolve benign relationships with their natural hosts, these data suggest that SwMV has potential to impact yield components. Viruses are frequently overlooked in crop development efforts, but represent the majority of emerging plant pathogens. For SwMV, it is imperative to quantify its impact on host performance, to identify the extent of any host resistance, and to assess any risks of virus spillover to agricultural plantings of other Poaceae species, including maize and sorghum.
- Research Organization:
- Great Lakes Bioenergy Research Center, Madison, WI (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- FC02-07ER64494; SC0018409
- OSTI ID:
- 1846251
- Journal Information:
- Global Change Biology. Bioenergy, Journal Name: Global Change Biology. Bioenergy Journal Issue: 4 Vol. 14; ISSN 1757-1693
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Data from: Emerging wild virus of native grass bioenergy feedstock is well established in the Midwestern USA and associated with premature stand senescence
Data from: Crop-associated virus infection in a native perennial grass: reduction in plant fitness and dynamic patterns of virus detection
Crop‐associated virus infection in a native perennial grass: reduction in plant fitness and dynamic patterns of virus detection
Dataset
·
Mon Jan 31 23:00:00 EST 2022
·
OSTI ID:1873899
Data from: Crop-associated virus infection in a native perennial grass: reduction in plant fitness and dynamic patterns of virus detection
Dataset
·
Wed Nov 29 23:00:00 EST 2017
·
OSTI ID:1873888
Crop‐associated virus infection in a native perennial grass: reduction in plant fitness and dynamic patterns of virus detection
Journal Article
·
Sun Jan 15 19:00:00 EST 2017
· Journal of Ecology
·
OSTI ID:1786925