Synthetic antibacterial minerals: harnessing a natural geochemical reaction to combat antibiotic resistance
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
The overuse of antibiotics in clinical and livestock settings is accelerating the selection of multidrug resistant bacterial pathogens. Antibiotic resistant bacteria result in increased mortality and financial strain on the health care and livestock industry. The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to have antimicrobial properties and kill antibiotic resistant bacteria. Harnessing the activity of compounds within these clays that harbor antibiotic properties offers new therapeutic opportunities for fighting the potentially devastating effects of the post antibiotic era. However, natural samples are highly heterogenous and exhibit variable antibacterial effectiveness, therefore synthesizing minerals of high purity with reproducible antibacterial activity is needed. Here we describe for the first time synthetic smectite clay minerals and Fe-sulfide microspheres that reproduce the geochemical antibacterial properties observed in natural occurring clays. We show that these mineral formulations are effective at killing the ESKAPE pathogens (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter sp., Pseudomonas aeruginosa and Enterobacter sp.) by maintaining Fe2+ solubility and reactive oxygen species (ROS) production while buffering solution pH, unlike the application of metals alone. Our results represent the first step in utilizing a geochemical process to treat antibiotic resistant topical or gastrointestinal infections in the age of antibiotic resistance.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
- Grant/Contract Number:
- AC52-07NA27344
- OSTI ID:
- 1844081
- Report Number(s):
- LLNL-JRNL-825820; 1039949
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Journal Issue: 1 Vol. 12; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
The application of synthetic antibacterial minerals to combat topical infections: exploring a mouse model of MRSA infection