CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
We report a computational fluid dynamics (CFD) study of containment of airborne hazardous materials in a ventilated room containing a downdraft table. Specifically, we investigated the containment of hazardous airborne material obtainable under a range of ventilation configurations. The desirable ventilation configuration should ensure excellent containment of the hazardous material released from the workspace above the downdraft table. However, increased airflow raises operation costs, so the airflow should be as low as feasible without compromising containment. The airflow is modeled using Reynolds Averaged Navier Stokes equations with a high Reynolds number k-epsilon turbulence model. CFD predictions are examined for several ventilation configurations. Based on this study, we find that substantial improvements in containment are possible concurrent with reduction in airflow, compared with the existing design of ventilation configuration.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1826686
- Journal Information:
- Journal of Occupational and Environmental Hygiene, Journal Name: Journal of Occupational and Environmental Hygiene Journal Issue: 11 Vol. 3; ISSN 1545-9624
- Publisher:
- Taylor and FrancisCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Investigation of room ventilation for improved operation of a downdraft table
CFD analysis of LLNL downdraft table