Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Understanding the Impact of Memory Access Patterns in Intel Processors

Conference ·
OSTI ID:1779130

Because of increasing complexity in the memory hierarchy, predicting the performance of a given application in a given processor is becoming more difficult. The problem is worsened by the fact that the hardware needed to deal with more complex memory traffic also affects energy consumption. Moreover, in a heterogeneous system with shared main memory, the memory traffic between the last level cache (LLC) and the memory creates contention between other processors and accelerator devices. For these reasons, it is important to investigate and understand the impact of different memory access patterns on the memory system. This study investigates the interplay between Intel processors' memory hierarchy and different memory access patterns in applications. The authors explore sequential streaming and strided memory access patterns with the objective of predicting LLC-dynamic random access memory (DRAM) traffic for a given application in given Intel architectures. Moreover, the impact of prefetching is also investigated in this study. Experiments with different Intel micro-architectures uncover mechanisms to predict LLC-DRAM traffic that can yield up to 99% accuracy for sequential streaming access patterns and up to 95% accuracy for strided access patterns.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE; USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1779130
Country of Publication:
United States
Language:
English

Similar Records

MAPredict: Static Analysis Driven Memory Access Prediction Framework for Modern CPUs
Conference · Sun May 01 00:00:00 EDT 2022 · OSTI ID:1887689

Comparing LLC-Memory Traffic between CPU and GPU Architectures
Conference · Mon Nov 01 00:00:00 EDT 2021 · OSTI ID:1887663

Collective Memory Transfers for Multi-Core Chips
Technical Report · Tue Nov 12 23:00:00 EST 2013 · OSTI ID:1164908

Related Subjects