
Understanding the Impact of Memory Access Patterns in Intel Processors

Mohammad Alaul Haque Monil∗, Seyong Lee †, Jeffrey S. Vetter† and Allen D. Malony∗

{mmonil, malony}@cs.uoregon.edu, lees2@ornl.gov, vetter@computer.org
∗ University of Oregon, † Oak Ridge National Laboratory, USA

Abstract—Due to increasing complexity in the memory hierar-
chy, predicting the performance of a given application in a given
processor is becoming more difficult. The problem is worsened
by the fact that the hardware needed to deal with more complex
memory traffic also affects energy consumption. Moreover, in a
heterogeneous system with shared main memory, the memory
traffic between the last level cache (LLC) and the memory
creates contention between other processors and accelerator
devices. For these reasons, it is important to investigate and
understand the impact of different memory access patterns on
the memory system. This study investigates the interplay between
Intel processors’ memory hierarchy and different memory access
patterns in applications. The authors explore streaming and
strided memory access patterns with the objective of predicting
LLC-DRAM traffic for a given application in given Intel architec-
tures. Moreover, the impact of prefetching is also investigated in
this study. Experiments with different Intel micro-architectures
uncover mechanisms to predict LLC-DRAM traffic that can yield
up to 99% accuracy for streaming access patterns and up to 95%
accuracy for strided access patterns.

Index Terms—Intel; Broadwell; Sky Lake; Cascade Lake;
Memory Access Patterns; Memory Traffic Prediction

I. INTRODUCTION

The disparity between the speed of CPU and memory
continues to exacerbate the ”memory wall” problem [15],
especially in the context of modern multi/many-core CPUs and
heterogeneous systems where shared memory is being used to
link cores, processors, and accelerator devices together. While
various innovations in memory hierarchy are helping to reduce
the gap, multi-level cache hierarchy has been a core technique
adopted by all processor manufacturers to battle memory wall
issues. Clearly, aggressive cache hierarchy can be effective,
but it also makes the interactions between the processor and
the DRAM more complex to track, understand, and model.

Cache hierarchy design in micro-architectures has evolved
significantly from just one level of fast cache to up to four
levels of cache, with different sizes, line widths, associativity
degrees, and sharing policies. Cache operation is complex
and varies across processor manufacturers and within micro-
architectures of the same manufacturer. It is also integrated
necessarily with the memory management architecture sup-
porting shared memory between other processors and devices,
including cache coherency and virtual memory. Understanding
the behavior of the memory system is a challenge. To do so
requires knowledge of the operational policies, which are not
entirely open to the community, as well as a means to observe
effects of cache/memory actions, which is only partially visible
through interfaces provided, such as hardware counters [16].

In the last decade, Intel has introduced several micro-
architectures, from Westmere in 2010 (32nm) to the recently
announced Tiger lake processors in 2020 (10nm). The micro-
architecture innovations during this period include changes in

the cache hierarchy, such as the size of the cache in different
levels and it’s policy. In recent Ice Lake processors, page table
structure was also changed to use 5-level paging, while 4-
level paging was used in the earlier processors. The number of
memory controllers and memory channels were also changed
in different micro-architectures. Clearly, all of these changes
impact both the performance and energy consumption of the
system and the applications that run on it. When trying to
optimize these factors for an application, the real question is
how to model them based on what we know of the micro-
architecture. Even if we concentrate on just a part of the
memory hierarchy, such as the memory traffic between LLC
and DRAM, the problem is difficult and further complicated
by the memory traffic patterns generated by an application.

Understanding the variation in different micro-architectures
is important to evaluate LLC-DRAM traffic, which in turn
is necessary for performance and energy prediction [8], [12],
[17], [21]. Because memory accesses served by the cache are
much faster than those by DRAM, there are clear performance
and energy consumption implications of such a difference
in memory access. Not only the hardware but also cache
policy and prefetching policy play significant roles in deciding
whether a memory request from a CPU core will be served by
the cache or by the DRAM. Moreover, performance model,
such as Roofline model is also dependent on LLC-DRAM
traffic [11], [13], [22] and predicting this traffic can indicate
compute memory intensity of a kernel.

The interplay between application and memory hierarchy is
also an important factor to be considered for understanding
memory traffic. Intel processors have a different mechanism
for the read and write instructions. Moreover, the memory
access pattern also plays a crucial role in determining the
number of memory accesses. For example, the streaming
access pattern would yield the best utilization of the cache
hierarchy since most of the accesses will be served by the
cache. The prefetching will also help this case. In contrast,
this may not be true for the strided access pattern, depending
on the stride length, cache, and prefetching.

This study investigates these factors via a systematic ex-
perimental evaluation of different memory access patterns
with varying data sizes. The objective is to devise a robust
prediction methodology that considers the hardware resources,
cache policy for the read and the write instructions, prefetching
mechanism, and application characteristics while investigating
memory traffic generation from LLC towards DRAM.

This study reports the following contributions:

• Strategy to measure LLC-DRAM traffic in Intel proces-
sors using PAPI uncore counters and TAU.

• Prediction mechanism of memory traffic for an applica-
tion with streaming access pattern.
• An analysis of strided access pattern of various stride

length and prediction mechanism for this pattern.
• Investigate the impact of prefetching on both types of

access patterns.
• Verify and measure prediction accuracy in different Intel

micro-architectures.

II. MOTIVATION

The complications in understanding the effects of the mem-
ory system on performance, in particular the cache hierarchy
and its interactions with memory, can be demonstrated through
a set of cases. The first case explored shows the difficulties
in measuring traffic from LLC to DRAM. The second case
highlights the importance of understating the differences of the
read and write instructions with the cache hierarchy. Finally,
the third case focuses on the difference between different
micro-architectures.

1 int stride = 1;
2 void vecMul(float *a, float *b, float *c, int n){
3 for(int i = 0; i < n; i += stride)
4 c[i] = a[i] * b[i];
5 }
6 int main(int argc, char* argv[]){
7 int n = 100000000;
8 float *h_a, *h_b, *h_c;
9 size_t total_size = n*sizeof(float);

10 // Allocate and align the vectors
11 h_a, h_b, h_c = align_allocate(total_size);
12 // Initialize vectors
13 for(int i = 0; i < n; i++) {
14 h_a[i] = sin(i); h_b[i] = cos(i);
15 }
16 fill_cache();
17 Start_memory_counters();
18 vecMul(h_a, h_b, h_c, n);
19 Stop_memory_counters();
20 report_counter();
21 free(h_a); free(h_b); free(h_c);
22 }

Listing 1: Vector multiplication

A. Observing LLC and DRAM traffic

Consider the case of vector multiplication shown as a C
code skeleton in Listing 1. There are three arrays denoted by
h a, h b, and h c. These arrays are allocated 100M floating-
point elements and aligned using the posix memalign() func-
tion. The vectors h a and h b are then initialized with some
values. The fill cache() (detail is not shown) function fills the
cache with some other data so that the vector multiplication is
not interfered with by any previous data from the initialization
phase that resided in the cache. The function vecMul() is then
called to multiply h a and h b elements and store them.

To count bytes transferred between LLC and
DRAM, PAPI [20] preset counters are used in the
Start memory counters(), Stop memory counters(), and
report counter() functions. For instance, the PAPI L3 TCM
event counter refers to the total cache miss at the last level of
cache which includes load and store misses of both data and
instructions. Since the given code is a sequential streaming

access pattern (i.e., stride = 1) and is aligned, it is expected
to be very cache-friendly. Therefore, a straightforward way
to calculate the traffic is by multiplying the cache miss event
at LLC by the cache line length (e.g., 64 bytes).

Fig. 1: Comparison of prediction vs PAPI preset event.

The expected data transfer for 100M data size is 2*100M
+ 1*100M = 300M floating points since there are two loads
and one store. This results in the total byte transfer being
300M * size of float = 1200M bytes. When divided by the
cache line length for the Broadwell micro-architecture, a total
of 18.75M cache lines is expected to be transferred between
LLC and DRAM. The comparison between predicted and
measured by PAPI is shown in Fig. 1. Oddly, the PAPI
event count for last level cache miss is found to be a total
of 12.45M, approximately two-thirds of the prediction. This
result is the same if off-core events are used from papi avail
tool. The reason behind this discrepancy is that PAPI counters
in Broadwell do not show the cache misses that occur with the
store instruction. This is confirmed by modifying the vecMul
kernel to remove the store instruction and keeping two load
instructions only. In this case the results matched.

Interestingly, the earlier Sandy Bridge micro-architecture
does include the write back in the off-core events, but the
recent Ice Lake again does not count the write back (see ”Off-
core Response Performance Monitoring” in Chapter 18 of Vol-
ume 3 of the Intel Architecture SW Developer’s Manual [3].
Simply put, this case demonstrates that designing a prediction
strategy for evaluating memory traffic must proceed cautiously,
taking into account not only the memory access pattern, but
also whether and how the micro-architecture makes visible
events to calculate outcomes.

Fig. 2: Read and write traffic (in Million) with varying stride.

B. Observation for strided execution

Things become more complicated with non-sequential
memory access. A common case is strided execution as
exemplified by Listing 1. Fig. 2 shows results from the method
presented in §III-A, where read and write counts are mea-
sured from the uncore elements. Again, a Broadwell micro-
architecture is used. For stride=1, it provides a 2x read count
when compared to write. After stride 16 the read count drops
by half, which is expected since the cache line length is 64
bytes (16*size of float = 64bytes). However, it is interesting

to notice that the write count is unchanged even though the
number of access is reduced significantly with higher stride.
Why? Does this occur with other Intel micro-architectures?
An investigation is necessary to understand such behavior and
create prediction models that take the full context (e.g., traffic
pattern, counter availability, cache line width) into account.

C. Difference between micro-architecture

Certainly, differences between micro-architectures can im-
pact prediction models and must be taken into account. Uncore
components can change thereby influencing the measuring
technique and ability to accurately measure traffic between the
LLC and DRAM. Moreover, prefetching mechanism and cache
policy can also be changed. Consider another twist in our
prediction methodology. To what extent can conclusions drawn
from one micro-architecture be used to reason about the LLC-
DRAM traffic in another micro-architecture? If possible, it is
desirable to design prediction mechanisms that work across
different micro-architectures.

The cases above guide the investigation presented in this
paper. The next section describes our prediction methodology
and the criteria we use to evaluate success. The outcomes from
experiments on different Intel micro-architectures are used to
evaluate advantages and disadvantages of our approach.

III. METHODOLOGY

Our goal is to create a robust model for predicting the
performance of LLC-DRAM traffic that can provide insight
into the interplay between memory access patterns and the
cache hierarchy in Intel processors. To do so, we developed
a LLC-DRAM traffic measurement mechanism that can take
into account the differences in micro-architecture support for
performance counters. That mechanism is used to analyze
traffic performance for different access patterns: streaming and
strided. The impact of prefetching is also discussed.

A. Measuring LLC-DRAM traffic using PAPI and TAU

LLC-DRAM traffic measurement requires observation of
hardware actions associated with the cache-memory inter-
face. Since PAPI preset counters and off-core counters from
papi avail tool are insufficient for measuring both read and
write traffic at this interface, it is necessary to use events
for the uncore component. Uncore events can be counted
from different uncore components [6]. It can be counted from
the caching agent (bdx unc cboXX) which exists one per
L3 cache slice. (For instance, a Xeon E5-2683 v4 processor
of the Broadwell family has sixteen CBo.) Measurement
can be also done through a home agent for each memory
controller (bdx unc haX). However, in this study, events for
the integrated memory controller (bdx unc imcX) are used. In
the case of the Xeon E5-2683 v4 processor used in our study,
there are two memory controllers and two memory channels
for each controller. So in total, there are four components.
The event name format is: bdx unc imc[0 or 1 or 4 or
5]:: UNC M CAS COUNT: [RD or WR]:cpu=x. Here, x
stands for the physical CPU core where the code is running.
The detail of the read/write events of CAS COUNT is found

in ”Table 2-120. Unit Masks for CAS COUNT” of Intel
document for Xeon E5 v4 [4].

Because different micro-architectures will have different
settings, these events need to be enabled and are not acti-
vated by default. PAPI paranoid needs to be set (”echo 0
> /proc/sys/kernel/perf event paranoid” as root). After setting
the PAPI paranoid value, the papi native avail tool shows the
uncore events. To evaluate the measured data, it is necessary
to compare it to a known value. In this study, events only
for vecMul() function of Listing 1 need to be counted. This
can be done by manually instrumenting PAPI native counters.
However, TAU [19] is used in this research since it can
generate function-wise profile and counter data. TAU needs to
be configured with PAPI and used with native counter support.
Using these tools, a script is prepared which can generate the
traffic measurement for the required function.

Fig. 3: Comparison of prediction vs PAPI uncore event.

B. Streaming access pattern

The streaming access pattern is one of the most common
patterns in applications and yields the best cache performance.
The prediction mechanism for streaming access pattern is
based on the size of the array being accessed, the cache line
width, and the number of read and write operations. For the
vector multiplication case, Fig. 3 shows the cacheline transfer
comparison between the prediction and the transfer measured
through uncore counters. Unlike Fig. 1, the transfer is found
to be close with 93.7% accurate for the total count, 91.5%
for write, and 94.9% for read traffic. One observation from
Fig. III-B is that for both read and write traffic the measured
values are higher than the predicted one. We consider the ac-
curacy to be reasonable and will continue to use the approach
in the rest of the study.
C. Strided access pattern

In contrast to streaming, a stride access pattern is more
complicated. Although still quite common in applications,
memory traffic performance in stride scenarios is less well
understood. Figure 2 shows the measured transfer of cache
lines for store instruction. Interestingly, it did not change
with varying stride. There are two major concerns with these
results. First, the number of writes seems to be equal to the
data structure size irrespective of stride, which means that
the number of cache line transfers for store instruction does
not depend on the number of actual data access. This seems
dubious. To put things in perspective, consider the following
example. If there is an array of size 100M and stride size is
4096, there are a total of 24414 array element accesses. For
a stride of 1, the number of array element accesses is 100M.
It seems highly unlikely that the results of 6.5M cache line
transfer for store instructions would be the same for both cases.
The second concern is to find out if there is a limit for this

kind of behavior. Figure 4 answers the above concerns, but we
need to better understand the read and write strategy of Intel.

Fig. 4: Explanation of cache line transfer for read and write
from DRAM with varying stride up to higher number.

1) Write strategy: Figure 4 provides clues about the write
strategy. After increasing the stride up to 256MiB (67108864
* size of float), the change in cache line transfer becomes
apparent versus what is seen in Fig. 2. Up to stride size
of 2MiB (524288 * size of float), the number of cacheline
transfer seems to be constant. After that point, stride doubling
reduces the number of transfers by half. There are two reasons
for this behavior. The first reason is initialization. In Listing 1,
the vector h c is not been initialized and for this reason, page
zeroing occurred. Uninitialized arrays are initialized with the
first write up a page. When initialization takes place, all lines
in a page become dirty irrespective of the number of actual
writes. For this reason, the number of cache line transfer has no
relation to the number of data accesses. Page zeroing occurs
to avoid information leakage from the previous content [2].
The default page size in a 64 bit OS (Centos-7 in our case)
for Intel processors is 4KiB. However, the default page size
did not have any effect. This is because Linux also supports
huge page sizes for Intel processors, which are 2MiB, 4MiB,
or 1GiB (4MiB is for 32 bit OS). Most versions of Linux
support ”transparent huge pages” which enables the capability
of using huge pages when possible. Because 100M arrays are
used, 2MiB pages are selected. If an array smaller than 2MiB
is used, the default page size of 4KiB is selected. If the array
for store (Array h c for Listing 1) is not initialized, then the
minimum data to be written is equal to the page size in use.

2) Read strategy: Reading from DRAM is less expensive
(compared to write) and is easier to interpret. Since prefetching
is disabled in our experiments, cache line size becomes the
deciding factor for the load instruction. In Fig. 4, the line for
read traffic shows that the number of cache line transfers are
consistent up to stride size of 16 (16 * size of float = 64Bytes)
which is equivalent to the cache line size. This is because,
every time a data is read from DRAM, the total cache line is
read. However, for stride size larger than 16, the cache line
transfer number reduces by half due to stride doubling. From
stride 128 onwards, the ratio slips from two and becomes a
straight line till the 2MiB cut-off line. To make an accurate
prediction, instead of considering reduction by half, the ratio
should be considered for those stride sizes.

Fig. 5: Impact of initialization on cache line transfer for read
and write. Both read and write traffic are impacted.

D. Strided access pattern with initialization

Since initialization of the array used for storing the result
plays a major role in cache line write transfers, we can modify
Listing 1 to initialize h c with a value. Running the experiment
again with varying stride size, the results in Fig. 5 are obtained.
After initialization, the change of the cache line transfer for
read and write is visible.

1) Write strategy: Since page zeroing is not a factor for
this case, write strategy is determined by the available caching
method. Intel has 6 types of caching methods possible (see
”11.3 Methods of Caching Available” in the Intel docu-
ment [3]). For the write combining method, a write combining
buffer of size 64 Bytes is used, the same as the cacheline.
If write combining buffer is not used, the write strategy is
dependent on cache line size. Thus, a prediction strategy with
64 Bytes caching covers both cases. The write line in Fig. 5 is
similar to read behavior where doubling stride after stride 16,
the number of cache line transfer reduces by half. A prediction
strategy can be formed from this observation.

2) Read strategy: Figure 5 shows an interesting case for the
cache line transfer for read. If Fig. 4 and Fig. 5 are compared,
it is visible the read counts are much higher in the later. To be
exact, the read counts are 1.5x higher with initialization than
without. The extra cache line transfer counts are coming from
the write strategy. When initialized, the Intel caching method
loads a cache line for a cache miss on write. For this reason,
the read counts are as if three arrays are being read. Apart from
this distinction, the behavior is the same with a non-initialized
version in which cache line is the deciding factor. Using this
observation a prediction strategy can be established.

E. Impact of prefetch in Intel hardware

Prefetching attempts to increase the cache hit rate to im-
prove performance [14]. Intel hardware has an aggressive
prefetching mechanism and some of it is disclosed. The
prefetching mechanism for Broadwell micro-architecture [1]
uses four types of h/w prefetchers. On every processor core,
there is a Model-Specific Register (MSR) that can control
these prefetchers. Four bits (0-3) can be set/not-set to enable
and disable these prefetchers. The first bit is responsible for
fetching additional cache lines to L2 cache. The second bit
enables to fetch adjacent cache line which makes the total
cache line length double (128 bytes). The third and fourth bits
are for fetching the next cache line to L1-D cache and for
sequential load history-based fetching. In our work, a custom

prefetch enabler/disabler is used [5]. The impact of prefetching
is discussed for both initialized and non-initialized case below.

Fig. 6: Impact of large page size for different stride size with
prefetching enabled. No impact on write strategy.

1) Impact of prefetching in non-initialized array: Prefetch-
ing needs to be understood to prepare a prediction mechanism
that can provide reasonable accuracy for most, if not all, cases.
Figure 6 presents the comparison between cache line transfer
count for read and write with prefetching enabled and disabled.
There is no visible impact for the write strategy since write
does not depend on cache line for this case. However, there is
a notable difference in read traffic when prefetch is enabled.
There are two major differences observed. The first difference
is that read traffic is not halved at stride 32, rather it stayed
similar to streaming access. This is because adjacent cache
lines are pulled in, giving the effect of a line twice as wide.
This is equivalent to a stride of 32. The second observation is
that for stride size 64, the traffic did not halve. This is because
of the first prefetch criteria where along with two cache lines
additional cache lines also are fetched. To provide a prediction,
the number of data access at stride 64 should be multiplied
by three for a reasonable prediction.

Fig. 7: Impact of prefetching on initialized arrays.

2) Impact of prefetching in initialized arrays: The impact
of prefetching on initialized arrays is portrayed in Fig. 7. There
is no significant change for write traffic. The visible difference
in read traffic is due to the same reasons for the non-initialized
case. Prediction can also be made in the same way.

F. Prediction criteria

A demonstration of our prediction is given in Table I for
varying stride with prefetch enabled for an initialized array.
Data is in million. Since the write array is initialized, the
predicted read traffic is calculated for three arrays. Since

prefetch is enabled, from stride 1 to 32, the predicted read
traffic is kept same as streaming access. Change starts from
stride 64. For stride 64, for read prediction, the actual data
access is multiplied by three to include prefetching impact
as suggested by the Broadwell prefetching mechanism. For
stride 128, the prediction divides the streaming access data
by 8 because the impact of prefetching vanishes at this point
and a regular strided pattern is followed. After that, every data
is halved for each doubling stride size. Predicted write traffic
is kept same until stride 16 and then reduced by half. This
prediction leads a good accuracy for this case.

TABLE I: Prediction for initialized array with prefetching.

Stride Read Predict R Acc. Write Predict W Acc.
1 18.862 18.750 99.4 6.665 6.250 93.8
2 18.814 18.750 99.7 6.625 6.250 94.3
4 18.800 18.750 99.7 6.663 6.250 93.8
8 18.804 18.750 99.7 6.638 6.250 94.2

16 18.803 18.750 99.7 6.645 6.250 94.1
32 18.591 18.750 99.1 3.645 3.125 85.7
64 14.190 14.063 99.1 2.030 1.563 77.0
128 2.365 2.344 99.1 0.840 0.781 93.0
256 1.184 1.172 99.0 0.421 0.391 92.7
512 0.594 0.586 98.6 0.213 0.195 91.9

1024 0.298 0.293 98.4 0.107 0.098 91.3
2048 0.149 0.146 98.1 0.059 0.049 83.4
4096 0.075 0.073 97.2 0.031 0.024 78.0
8192 0.038 0.037 96.7 0.016 0.012 76.7

TABLE II: Prediction for non initialized and no prefetching.

Stride Read Predict R Acc. Write Predict W Acc.
1 6.565 6.250 95.2 3.641 3.125 85.8
2 6.531 6.250 95.7 3.613 3.125 86.5
4 6.471 6.250 96.6 3.477 3.125 89.9
8 6.478 6.250 96.5 3.527 3.125 88.6
16 6.449 6.250 96.9 3.530 3.125 88.5
32 3.307 3.125 94.5 3.348 3.125 93.3
64 1.741 1.645 94.5 3.249 3.125 96.2

128 0.952 0.914 96.0 3.214 3.125 97.2
256 0.563 0.537 95.5 3.211 3.125 97.3
512 0.363 0.358 98.7 3.146 3.125 99.3
1024 0.264 0.276 95.5 3.177 3.125 98.4
2048 0.216 0.230 93.6 3.137 3.125 99.6
4096 0.194 0.209 92.2 3.164 3.125 98.8
8192 0.178 0.209 82.7 3.167 3.125 98.7

Prediction data for non initialized array (size 50M) without
prefetching is presented in Table II. Since the stride size is
smaller than 2MiB, the predicted write traffic is considered
the same. For predicted read traffic, the data is kept same as
streaming access up to stride 16. For 32 stride the prediction
halved. As mentioned earlier, from stride 64 onward the read
traffic starts plateauing, and hence the ratio observed from
Fig. 4 (size 100M) is used for predicting read traffic. For
example, the ratio of read traffic for 128 and 256 stride is
1.7 instead of two. (Further explained in Appendix §VIII-C).

IV. EXPERIMENTAL SETUP

The section discusses the micro-architectures of Intel which
are used in this study. The machines oswald00, quad00, and
apachepass are presented in Table III and are the part of ORNL
Experimental Computing Laboratory (ExCL). For all these
nodes, the default page size is 4KiB. The Broadwell machine

(a) Read. (b) Write. (c) Total.
Fig. 8: Prediction accuracy of traffic between LLC-DRAM for different micro-architectures.

has two memory controllers where each controls two memory
channels. On the other hand, Sky Lake and Cascade Lake
machines have three memory controllers that control a total of
six memory channels. GCC 9.1 is used for experiments and
also used to build TAU and PAPI. All the experimentation is
done using Listing 1 with necessary modifications.

TABLE III: Micro-architectures.
Name Year Processor LLC Machine

Broadwell 2016 Xeon(R) E5-2683 v4 40MB oswald00
Sky Lake 2017 Xeon(R) Silver 4114 14MB quad00

Cascade Lake 2019 Xeon(R) Gold 6248 28MB apachepass

V. EXPERIMENTAL RESULTS

This section presents the verification of the conclusion
drawn in the methodology section. To verify, predicted traffic
for read and write is compared against measured traffic not
only in different micro-architectures but also with different
data sizes. In the methodology section, observations were
made on an array size of 100M. Those observations are
verified by using three array sizes which are 500M, 50M, and
5M. Each array size is tested against each micro-architecture.
The experimental evaluation is done for five cases. At first,
the streaming access pattern is verified for different micro-
architectures. Then strided access pattern is verified in four
ways, 1) non-initialized array where prefetching is disabled,
2) non-initialized array where prefetching is enabled, 3) ini-
tialized array with prefetching disabled, and 4) initialized array
with prefetching enabled. In all the graphs in this section, data
for Broadwell is presented by white dotted bars, Sky Lake is
presented by grey slashed bars, and Cascade Lake is presented
by white circled bars (given in Fig. 8b). The formula of error
is, error = Absolute[(measured-predicted)/measured*100] and
formula for accuracy is, accuracy = [100 - error].
A. Comparison of streaming access pattern

Figure 8 presents the comparison with predicted traffic
for streaming access pattern for different micro-architectures.
In this figure, predicted and measured read, write, and total
traffic is compared using the error metric. Figure 8a shows,
all three micro-architectures yield very high accuracy for
read traffic prediction. Broadwell provided 99%, Sky Lake
provided, 99.6% and Cascade Lake provided 99.7% average
accuracy considering the accuracy for all data sizes. Write
traffic prediction is presented in Fig. 8b where Sky Lake and
Cascade Lake provided accuracy of 99.3% and 99.7% respec-
tively. However, Broadwell provided 79.2% overall accuracy
because of poor accuracy (48.5%) for 5M array size. This

indicates the processor is generating extra write traffic towards
DRAM for smaller array sizes. Based on the data, it is evident
that this behavior improved in the later Sky Lake and Cascade
Lake processors. Overall (read + write) traffic comparison is
shown in Fig. 8c. As expected, the Sky Lake provided 99.5%
and Cascade Lake provided 99.7% accuracy. Because of high
inaccuracy for the smallest array size, Broadwell provided
91.1% accuracy overall. A total of 25 cases out of 27 provided
accuracy which is more than 94%. For better representations,
total traffic is presented in the later comparisons.

B. Strided access pattern with non-initialized array

Prediction accuracy for non-initialized array (e.g., array h c
for Listing 1) is verified and presented in Fig. 10 for varying
stride size. These experiments are done for three data sizes
in three micro-architectures for each stride. Figure 10 also
provides a comparison with prefetching enabled and disabled.
The prediction mechanism for strided access with and without
prefetching is discussed in §III-F. Overall accuracy is calcu-
lated by averaging all strides’ accuracy.

1) Prefetching disabled: Figures 9a, 9b, and 9c present
the comparison for prefetching disabled cases. In Fig. 9a, for
500M array size, Broadwell showed 97.2% accuracy, Sky Lake
showed 95.7% accuracy, and Cascade Lake showed 95.7%
accuracy. There is no case where accuracy is less than 92%.
In Fig. 9b, for 50M array size, Broadwell showed 96.2%
accuracy, Sky Lake showed 95.8% accuracy, and Cascade
Lake showed 95.8% accuracy. In this figure, for all 42 cases,
accuracy is higher than 91%. In Fig. 9c, for 5M array size,
Broadwell showed 83.2% accuracy, Sky Lake showed 92.7%
accuracy, and Cascade Lake showed 92.7% accuracy. The
reason for lower accuracy in Broadwell is due to lower ac-
curacy in predicting write traffic. Since the data for streaming
access pattern continues up to the stride size equivalent to
cacheline size (which stride 16 or 64bytes) and accuracy is
low for streaming access pattern in Broadwell for smaller
array size, accuracy stays low until stride 16. After stride
16, accuracy seems to improve for Broadwell. Like streaming
access pattern, this category also yields high accuracy for
Cascade Lake and Sky Lake while observing lower accuracy
for the lowest array size for Broadwell.

2) Prefetching enabled: Prediction mechanism with
prefetching enabled is based on the disclosed prefetching
document of Intel Broadwell micro-architecture [1]. Since
then prefetching mechanism changed in later micro-
architectures [2]. Figures 9d, 9e, and 9f present accuracy

(a) 500M-prefetching disabled. (b) 50M-prefetching disabled. (c) 5M-prefetching disabled.

(d) 500M-prefetching enabled. (e) 50M-prefetching enabled. (f) 5M-prefetching enabled.

Fig. 9: Prediction accuracy for non-initialized arrays with prefetching enabled and disabled.
of prediction when prefetching is enabled. In Fig. 9d, for
500M array size, Broadwell showed 96.3% accuracy, Sky
Lake showed 92.2% accuracy, and Cascade Lake showed
92.2% accuracy. In Fig. 9e, for 50M array size, Broadwell
showed 95.6% accuracy, Sky Lake showed 92.4% accuracy,
and Cascade Lake showed 92.4% accuracy. In Fig. 9f, for
5M array size, Broadwell showed 83.1% accuracy, Sky Lake
showed 91.4% accuracy, and Cascade Lake showed 91.4%
accuracy. Lower accuracy is observed for Broadwell for low
array size which is explained earlier. Prefetching prediction
based on Broadwell did not provide high accuracy for stride
32 and 64 for Sky Lake and Cascade Lake. The data suggests
that the low accuracy for those stride sizes are introduced by
the change in prefetching mechanism. However, for 500M
and 50M array size Broadwell provided high accuracy for
those stride sizes (at least 92%).
C. Strided access pattern with initialized array

In Fig. 9, prediction mechanism demonstrated in §III-F for
initialized array (e.g., array h c for Listing 1) is verified with
prefetching enabled and disabled. When array is initialized,
the constant write traffic case disappears.

1) Prefetching disabled: Figures 10a, 10b, and 10c present
the comparison for prefetching disabled cases. In Fig. 10a,
for 500M array size, Broadwell showed 97.9% accuracy, Sky
Lake showed 99.5% accuracy, and Cascade Lake showed

99.5% accuracy. In Fig. 10b, for 50M array size, Broadwell
showed 94.4% accuracy, Sky Lake showed 99.1% accuracy,
and Cascade Lake showed 99.1% accuracy. Even though some
high inaccuracies are visible in Fig. 10b, the accuracy did
not go below 87%. In Fig. 10c, for 5M array size, Broadwell
showed 73.8% accuracy, Sky Lake showed 97.8% accuracy,
and Cascade Lake showed 97.8% accuracy. Error is higher
with a higher stride in some figures. This is because in a higher
stride, the number of access is very low and small variation
seems larger. Moreover, Broadwell yields low accuracy for
the smallest array size. However, the error is constantly high
which provides a chance to adjust the prediction criteria.

2) Prefetching enabled: Figures 10d, 10e, and 10f present
the comparison for prefetching disabled cases. In Fig. 10d,
for 500M array size, Broadwell showed 98.2% accuracy, Sky
Lake showed 95.9% accuracy, and Cascade Lake showed
95.9% accuracy. In Fig. 10e, for 50M array size, Broadwell
showed 94.1% accuracy, Sky Lake showed 95.4% accuracy,
and Cascade Lake showed 95.4% accuracy. In Fig. 10f, for
5M array size, Broadwell showed 69.1% accuracy, Sky Lake
showed 93.7% accuracy, and Cascade Lake showed 93.7% ac-
curacy. Similar prefetching behavior like non-initialized cases
for Cascade Lake and Sky Lake is observed for 32, 64, and
128 strides due to Broadwell specific prediction mechanism.

While most cases provided high accuracy, prediction mech-

(a) 500M-prefetching disabled. (b) 50M-prefetching disabled. (c) 5M-prefetching disabled.

(d) 500M-prefetching enabled. (e) 50M-prefetching enabled. (f) 5M-prefetching enabled.

Fig. 10: Prediction accuracy for initialized arrays with prefetching enabled and disabled.

anism for small array size for Broadwell and prefetching for
Sky Lake and Cascade Lake has room for improvement.

VI. RELATED WORKS

Two previous studies looked deeper into memory access
pattern to come up with an analytical model [18], [23]. Peng
et al. [18] introduced analytical model for different memory
access pattern and interfaced those model in a cycle accurate
simulation to find memory traffic. On the other hand, Yu et
al. [23] investigated applications vulnerability by using an
analytical model that uses cache hierarchy to predict memory
traffic for different access patterns. However, both of these
works are based on simulation and fall short when compared
to complex cache hierarchy of modern processors. For this
reason, investigating the change in different micro-architecture
is important. Using Intel advisor tool, Marques et al. [13]
analyzed performance of benchmark application to understand
and improve cache performance. In [7], Alappat et al. inves-
tigated Intel Broadwell and Cascade Lake processors for un-
derstanding the cache behaviour. Hammond et al. investigated
Intel Sky Lake processor [9]. Hofman et al. also investigated
different micro-architectures [10], [11]. Understanding cache
performance is important for Roofline model [22]. Predicting
traffic between LLC and DRAM provides higher accuracy
when predicting execution time and energy consumption.
Monil et al. [17] studied memory contention in shared memory
heterogeneous system where traffic between LLC and DRAM
plays a crucial. Allen et al. [8] investigated impact of differ-
ent memory access patterns on GPU. Lee et al. introduced
automated modeling and prediction framework [12] where
determining LLC-DRAM traffic will improve accuracy. The
same goes for the study by Umar et al. [21].

VII. CONCLUSION AND FUTURE WORK

The interplay between application’s memory access pattern
and cache hierarchy of Intel micro-architectures is investigated
in this study. Through experimentation a prediction mechanism
that yields reasonable accuracy is introduced from the observa-
tion from one micro-architecture which in turn is tested in two
other micro-architectures. A prediction mechanism that is built
from the observation from Broadwell processor yielded rea-
sonable prediction accuracy when tested against Sky Lake and
Cascade Lake. However, prediction mechanism for prefetching
enabled cases in Sky Lake and Cascade Lake has room for
improvement. The authors foresee formulating an analytical
model for Intel processors that can predict traffic between
LLC and DRAM. Moreover, predicting energy consumption
and performance by taking traffic between LLC and DRAM
into consideration is also in the authors’ future plan.

REFERENCES

[1] Disclosure of hardware prefetcher control on some intel processors.
https://software.intel.com/content/www/us/en/develop/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.html.
Accessed: 2020-09-01.

[2] Explanation of using different page size. https:
//community.intel.com/t5/Software-Tuning-Performance/
Explanation-of-LLC-to-DRAM-write-count-in-Haswell/m-p/1205752#
M7638. Accessed: 2020-09-01.

[3] Intel® 64 and ia-32 architectures software developer’s manual combined
volumes: 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, and 4. https://software.
intel.com/content/www/us/en/develop/articles/intel-sdm.html. Accessed:
2020-09-01.

[4] Intel® xeon® processor e5 and e7 v4 product families
uncore performance monitoring reference manual. https:
//www.intel.com/content/www/us/en/products/docs/processors/xeon/
xeon-e5-e7-v4-uncore-performance-monitoring.html. Accessed:
2020-09-01.

[5] Tool to enable and disable prefetch in intel processor. https://github.
com/deater/uarch-configure/tree/master/intel-prefetch. Accessed: 2020-
09-01.

[6] Uncore performance monitoring of intel micro-architecture.
https://software.intel.com/content/www/us/en/develop/blogs/
documentation-for-uncore-performance-monitoring-units.html.
Accessed: 2020-09-01.

[7] C. L. Alappat, J. Hofmann, G. Hager, H. Fehske, A. R. Bishop, and
G. Wellein. Understanding hpc benchmark performance on intel broad-
well and cascade lake processors. arXiv preprint arXiv:2002.03344,
2020.

[8] T. Allen and R. Ge. Characterizing power and performance of gpu
memory access. In 2016 4th International Workshop on Energy Efficient
Supercomputing (E2SC), pages 46–53. IEEE, 2016.

[9] S. Hammond, C. Vaughan, and C. Hughes. Evaluating the intel skylake
xeon processor for hpc workloads. In International Conference on High
Performance Computing & Simulation (HPCS18), pages 342–349, 2018.

[10] J. Hofmann, D. Fey, J. Eitzinger, G. Hager, and G. Wellein. Analysis of
intel’s haswell microarchitecture using the ecm model and microbench-
marks. In International Conference on Architecture of Computing
Systems, pages 210–222. Springer, 2016.

[11] J. Hofmann, G. Hager, G. Wellein, and D. Fey. An analysis of core-
and chip-level architectural features in four generations of intel server
processors. In International supercomputing conference, pages 294–314.
Springer, 2017.

[12] S. Lee, J. S. Meredith, and J. S. Vetter. Compass: A framework for
automated performance modeling and prediction. In 29.

[13] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and
Z. A. Matveev. Performance analysis with cache-aware roofline model
in intel advisor. In 2017 International Conference on High Performance
Computing & Simulation (HPCS), pages 898–907. IEEE, 2017.

[14] C. McCurdy, G. Marin, and J. S. Vetter. Characterizing the impact of
prefetching on scientific application performance. In 4th International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS13), Denver, 2013.

[15] S. A. McKee. Reflections on the memory wall. In Proceedings of the
1st conference on Computing frontiers, page 162, 2004.

[16] D. Molka, D. Hackenberg, and R. Schöne. Main memory and cache
performance of intel sandy bridge and amd bulldozer. In The workshop
on Memory Systems Performance and Correctness, pages 1–10, 2014.

[17] M. A. H. Monil, M. Belviranli, S. Lee, J. S. Vetter, and A. Malony.
Mephesto: Modeling energy-performancein heterogeneous socs and their
trade-offs. In Proceedings of the 29th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2020.

[18] I. B. Peng, J. S. Vetter, S. V. Moore, and S. Lee. Tuyere: enabling
scalable memory workloads for system exploration. In Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing, pages 180–191, Tempe, Arizona, 2018. ACM.

[19] S. S. Shende and A. D. Malony. The tau parallel performance system.
The International Journal of High Performance Computing Applications,
20(2):287–311, 2006.

[20] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance
data with papi-c. In Tools for High Performance Computing 2009, pages
157–173. Springer, 2010.

[21] M. Umar, S. V. Moore, J. S. Meredith, J. S. Vetter, and K. W. Cameron.
Aspen-based performance and energy modeling frameworks. Journal of
Parallel and Distributed Computing, 120:222–236, 2018.

[22] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications
of the ACM, 52(4):65–76, 2009.

[23] L. Yu, D. Li, S. Mittal, and J. S. Vetter. Quantitatively modeling
application resiliency with the data vulnerability factor. ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), 2014.

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://community.intel.com/t5/Software-Tuning-Performance/Explanation-of-LLC-to-DRAM-write-count-in-Haswell/m-p/1205752#M7638
https://community.intel.com/t5/Software-Tuning-Performance/Explanation-of-LLC-to-DRAM-write-count-in-Haswell/m-p/1205752#M7638
https://community.intel.com/t5/Software-Tuning-Performance/Explanation-of-LLC-to-DRAM-write-count-in-Haswell/m-p/1205752#M7638
https://community.intel.com/t5/Software-Tuning-Performance/Explanation-of-LLC-to-DRAM-write-count-in-Haswell/m-p/1205752#M7638
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/xeon-e5-e7-v4-uncore-performance-monitoring.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/xeon-e5-e7-v4-uncore-performance-monitoring.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/xeon-e5-e7-v4-uncore-performance-monitoring.html
https://github.com/deater/uarch-configure/tree/master/intel-prefetch
https://github.com/deater/uarch-configure/tree/master/intel-prefetch
https://software.intel.com/content/www/us/en/develop/blogs/documentation-for-uncore-performance-monitoring-units.html
https://software.intel.com/content/www/us/en/develop/blogs/documentation-for-uncore-performance-monitoring-units.html

VIII. APPENDIX

A. Artifact description

Application (e.g., Vector multiplication) that exhibits
streaming and strided memory access pattern is executed
on Intel processors from different micro-architectures which
include Broadwell, Sky Lake, and Cascade Lake (Detail in
Table III). Using TAU and PAPI, uncore counters are mea-
sured to find out the traffic between LLC and DRAM. By
enabling and disabling prefetching, experimentation is done in
all three micro-architectures. Different data structure sizes and
initialization factors are also considered. In the end, measured
data is compared to predicted data.

B. Artifact availability

Software artifact is available in the github repository(link):
MCHPC AD AE. There is no author-created hardware arti-
fact. Data artifact is kept in the same github repository and no
author-created artifacts are proprietary.

1) Experimental setup: Hardware details are given in Table
III. The operating system is Centos-7. GCC 9.1 is used. TAU-
2.29 and PAPI-6.0.0.1 are used in measuring LLC-DRAM
traffic. PAPI paranoid must be set (see §III-A). Moreover,
prefetching enabler/disabler needs to be installed [5].

C. Artifact Evaluation — validation

To facilitate the validation in artifact evaluation, the pre-
diction mechanism is further detailed in this section. The
prediction model starts with stream access (i.e., stride = 1).
Calculation for streaming access is explained in §II-A.

TABLE IV: Prediction for non-initialized array with or without
prefetching.

Stride Read no pref. Write no pref. Read pref. Write pref.
1 stream stream stream stream
2 stream stream stream stream
4 stream stream stream stream
8 stream stream stream stream

16 stream stream stream stream
32 prev/2 stream stream stream
64 prev/1.9 stream access*3 stream
128 prev/1.8 stream stream/8 stream
256 prev/1.7 stream prev/1.7 stream
512 prev/1.5 stream prev/1.4 stream

1024 prev/1.3 stream prev/1.3 stream
2048 prev/1.2 stream prev/1.2 stream
4096 prev/1.1 stream prev/1.1 stream
8192 prev/1.0 stream prev/1.0 stream

1) Non-initialized write array with prefetching disabled:
The second and third columns of Table IV represent read and
write prediction criteria when prefetching is disabled. Since
the highest stride is smaller than 2MiB and the array is non-
initialized, for write prediction, streaming access data is shown
for all strides. For read prediction, streaming access is followed
until stride 16 and for stride 32, stream data is divided by two
which is denoted by prev/2 (here, prev denotes the data from
the previous stride). From stride 64 and onward a ratio is
followed which is shown in the table (based on Fig. 4).

2) Non-initialized write array with prefetching enabled:
The last two columns of Table IV shows the prediction criteria
when prefetching is enabled for non-initialized write array. For
write traffic prediction, there is no change when prefetching is
disabled. For read traffic prediction, enabling prefetching only
impacts stride 32, 64, and 128. For stride 32, when prefetching
is enabled, stream access data is followed and for stride 64,
total data access (array size / stride) is multiplied by three
since the adjacent cache line and one additional cache line are
pulled from DRAM as per prefetching policy. Stride 128 does
not have any impact of prefetching so stream data is divided
by 8 to follow the regular of no-prefetching.
TABLE V: Prediction for initialized array with or without
prefetching.

Stride Read no pref. Write no pref. Read pref. Write pref.
1 stream stream stream stream
2 stream stream stream stream
4 stream stream stream stream
8 stream stream stream stream
16 stream stream stream stream
32 prev/2 prev/2 stream prev/2
64 prev/2 prev/2 access*3 prev/2

128 prev/2 prev/2 stream/8 prev/2
256 prev/2 prev/2 prev/2 prev/2
512 prev/2 prev/2 prev/2 prev/2
1024 prev/2 prev/2 prev/2 prev/2
2048 prev/2 prev/2 prev/2 prev/2
4096 prev/2 prev/2 prev/2 prev/2
8192 prev/2 prev/2 prev/2 prev/2
3) Initialized write array with prefetching disabled: The

second and third columns of Table V represents read and write
prediction criteria when prefetching is disabled. For both read
and write traffic prediction, stream data is continued up to
stride 16 and then reduces by half when the stride is doubled.

4) Initialized write array with prefetching enabled: Last
two columns of Table V shows the prediction criteria when
prefetching is enabled for initialized write array. For write
traffic prediction there is no change when prefetching is
disabled. For read traffic prediction, enabling prefetching only
impacts stride 32, 64, and 128 which are predicted similar to
non-initialized cases.

5) Data sheet: Data sheet (MCHPC AD AE.xlsx) is pro-
vided in the repository (MCHPC AD AE) which shows pre-
diction values, measured values, and error for each data size
for each micro-architecture.

D. Artifact Evaluation — Verification
For artifact verification codes and scripts are given in the

repository (link: MCHPC AD AE) which are described below:
• [repo]/native run and show broadwell.sh: to run exper-

iments on Broadwell architecture for all data sizes with
prefetching enabled and disabled.

• [repo]/native run and show skylake.sh: For Sky Lake.
• [repo]/native run and show cascadelake.sh: For Cas-

cade Lake.
• [repo]/vecmul.c: This is the code for Listing 1
All the figures presented in the paper can be produced by

python script in [repo]/graphs location. The scripts are named
according to the figure number in the paper.

https://github.com/monil01/mchpc_ad_ae
https://github.com/monil01/mchpc_ad_ae
https://github.com/monil01/mchpc_ad_ae

	Introduction
	Motivation
	Observing LLC and DRAM traffic
	Observation for strided execution
	Difference between micro-architecture

	Methodology
	Measuring LLC-DRAM traffic using PAPI and TAU
	Streaming access pattern
	Strided access pattern
	Write strategy
	Read strategy

	Strided access pattern with initialization
	Write strategy
	Read strategy

	Impact of prefetch in Intel hardware
	Impact of prefetching in non-initialized array
	Impact of prefetching in initialized arrays

	Prediction criteria

	Experimental Setup
	Experimental Results
	Comparison of streaming access pattern
	Strided access pattern with non-initialized array
	Prefetching disabled
	Prefetching enabled

	Strided access pattern with initialized array
	Prefetching disabled
	Prefetching enabled

	Related Works
	Conclusion and future work
	References
	Appendix
	Artifact description
	Artifact availability
	Experimental setup

	Artifact Evaluation — validation
	Non-initialized write array with prefetching disabled
	Non-initialized write array with prefetching enabled
	Initialized write array with prefetching disabled
	Initialized write array with prefetching enabled
	Data sheet

	Artifact Evaluation — Verification

