The potential changes in the strength and location of five low-level jets (LLJs) located within four Coordinated Regional Climate Downscaling Experiment (CORDEX) domains are examined for present and future climate conditions using an ensemble of simulations conducted with the RegCM4 regional model at a 25 km horizontal grid spacing. Lateral and lower boundary forcing fields are from three General Circulation Models (GCMs), and we analyse a historical period (1995–2014) along with two future periods (2041–2060 and 2080–2099) under the Representative Concentration Pathways 2.6 and 8.5. The RegCM4, as driven by the GCMs, is capable of capturing most of the observed climatological features of the LLJs, both in terms of spatial location and seasonal evolution. Analysis of the influence of global warming on the LLJs shows a consistent strengthening of the jets and a shift in their location under both warming scenarios. The Monsoon and West African westerly LLJs exhibit a northward shift, while the Caribbean and South American LLJs present a westward expansion. The use of an ensemble of high-resolution simulations is found to provide a key element for a robust assessment of changes in LLJs associated with future global warming scenarios.
Torres-Alavez, José Abraham, et al. "Future projections in the climatology of global low-level jets from CORDEX-CORE simulations." Climate Dynamics, vol. 57, no. 5-6, Feb. 2021. https://doi.org/10.1007/s00382-021-05671-6
Torres-Alavez, José Abraham, Das, Sushant, Corrales-Suastegui, Arturo, et al., "Future projections in the climatology of global low-level jets from CORDEX-CORE simulations," Climate Dynamics 57, no. 5-6 (2021), https://doi.org/10.1007/s00382-021-05671-6
@article{osti_1765499,
author = {Torres-Alavez, José Abraham and Das, Sushant and Corrales-Suastegui, Arturo and Coppola, Erika and Giorgi, Filippo and Raffaele, Francesca and Bukovsky, Melissa S. and Ashfaq, Moetasim and Salinas, José Antonio and Sines, Taleena},
title = {Future projections in the climatology of global low-level jets from CORDEX-CORE simulations},
annote = {The potential changes in the strength and location of five low-level jets (LLJs) located within four Coordinated Regional Climate Downscaling Experiment (CORDEX) domains are examined for present and future climate conditions using an ensemble of simulations conducted with the RegCM4 regional model at a 25 km horizontal grid spacing. Lateral and lower boundary forcing fields are from three General Circulation Models (GCMs), and we analyse a historical period (1995–2014) along with two future periods (2041–2060 and 2080–2099) under the Representative Concentration Pathways 2.6 and 8.5. The RegCM4, as driven by the GCMs, is capable of capturing most of the observed climatological features of the LLJs, both in terms of spatial location and seasonal evolution. Analysis of the influence of global warming on the LLJs shows a consistent strengthening of the jets and a shift in their location under both warming scenarios. The Monsoon and West African westerly LLJs exhibit a northward shift, while the Caribbean and South American LLJs present a westward expansion. The use of an ensemble of high-resolution simulations is found to provide a key element for a robust assessment of changes in LLJs associated with future global warming scenarios.},
doi = {10.1007/s00382-021-05671-6},
url = {https://www.osti.gov/biblio/1765499},
journal = {Climate Dynamics},
issn = {ISSN 0930-7575},
number = {5-6},
volume = {57},
place = {United States},
publisher = {Springer-Verlag},
year = {2021},
month = {02}}