Solving Coupled Cluster Equations by the Newton Krylov Method
We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.
- Sponsoring Organization:
- USDOE Office of Science (SC); USDOE National Nuclear Security Administration (NNSA); Czech Science Foundation
- Grant/Contract Number:
- AC05-76RL01830; AC05-00OR22725
- OSTI ID:
- 1734948
- Alternate ID(s):
- OSTI ID: 1755915
- Journal Information:
- Frontiers in Chemistry, Journal Name: Frontiers in Chemistry Vol. 8; ISSN 2296-2646
- Publisher:
- Frontiers Research FoundationCopyright Statement
- Country of Publication:
- Switzerland
- Language:
- English
Similar Records
An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization