skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deposition pressure dependent structural and optoelectronic properties of ex-situ boron-doped poly-Si/SiOx passivating contacts based on sputtered silicon

Journal Article · · Solar Energy Materials and Solar Cells
 [1];  [1];  [2];  [3]; ORCiD logo [4];  [4];  [1];  [1];  [1]
  1. Australian National Univ., Canberra, ACT (Australia)
  2. Australian National Univ., Canberra, ACT (Australia); Nanchang Univ. (China). Inst. of Photovoltaics
  3. Australian National Univ., Canberra, ACT (Australia); Shanghai Jiao Tong Univ. (China). Inst. of Solar Energy
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States)

Among common methods to form polycrystalline silicon (poly-Si) films for passivating-contact solar cells, physical vapor deposition, in particular sputtering, is the safest one as it does not require any toxic gaseous precursors. One of the critical parameters to control the properties of sputtered silicon films is their deposition pressure. In this work, structural and optoelectronic characteristics of ex-situ boron-doped poly-Si/SiOx passivating contacts, formed from sputtered intrinsic amorphous silicon (a-Si) deposited at different pressures on top of SiOx/c-Si substrates and subjected to a high-temperature boron diffusion step, are investigated. The deposition rate and density of the as-deposited a-Si films increase with reducing pressure. Low-temperature photoluminescence spectra captured from the as-deposited samples at different pressures do not show typical emissions from hydrogenated a-Si. Meanwhile, their Fourier-transform infrared absorption spectra all show Si–H stretching modes, indicating that hydrogen had been initially incorporated into the chemical SiOx layers and eventually hydrogenated the a-Si/SiOx interfaces during the sputtering process. After the high-temperature boron-diffusion step, all hydrogen-related peaks disappear. Lower pressure films (1.5 and 2.5 mTorr) show more consistent improved performance after hydrogen treatments, compared to higher pressure films (4 and 5 mTorr). Overall, the resultant passivating contacts at 2.5 mTorr achieve a low single-side recombination current density Jo of ~9 fA/cm2, whereas their contact resistivity is still low at 15 mO cm2.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; Australian Renewable Energy Agency (ARENA)
Grant/Contract Number:
AC36-08GO28308; RND017
OSTI ID:
1660011
Report Number(s):
NREL/JA-5K00-76318; MainId:7067; UUID:ed92be6d-4762-ea11-9c31-ac162d87dfe5; MainAdminID:13767
Journal Information:
Solar Energy Materials and Solar Cells, Vol. 215; ISSN 0927-0248
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English