Residual-based a posteriori error estimation for hp-adaptive finite element methods for the Stokes equations
Journal Article
·
· Journal of Numerical Mathematics
- Texas A & M Univ., College Station, TX (United States)
- Colorado State Univ., Fort Collins, CO (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
We derive a residual-based a posteriori error estimator for the conforming hp-Adaptive Finite Element Method (hp-AFEM) for the steady state Stokes problem describing the slow motion of an incompressible fluid. This error estimator is obtained by extending the idea of a posteriori error estimation for the classical h-version of AFEM. We also establish the reliability and efficiency of the error estimator. The proofs are based on the well-known Clément-type interpolation operator introduced in [27] in the context of the hp-AFEM. Numerical experiments show the performance of an adaptive hp-FEM algorithm using the proposed a posteriori error estimator.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1649541
- Journal Information:
- Journal of Numerical Mathematics, Journal Name: Journal of Numerical Mathematics Journal Issue: 4 Vol. 27; ISSN 1570-2820
- Publisher:
- de GruyterCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
A posteriori error estimation and adaptivity in hp virtual elements
A Fully Computable A Posteriori Error Estimate for the Stokes Equations on Polytopal Meshes
An Hp-Adaptive Minimum Action Method Based on a Posteriori Error Estimate
Journal Article
·
Sat Jun 15 00:00:00 EDT 2019
· Numerische Mathematik
·
OSTI ID:1542818
A Fully Computable A Posteriori Error Estimate for the Stokes Equations on Polytopal Meshes
Journal Article
·
Mon Dec 31 23:00:00 EST 2018
· SIAM Journal on Numerical Analysis
·
OSTI ID:1531205
An Hp-Adaptive Minimum Action Method Based on a Posteriori Error Estimate
Journal Article
·
Sun Dec 31 23:00:00 EST 2017
· Communications in Computational Physics
·
OSTI ID:1492405