A posteriori error estimation and adaptivity in hp virtual elements
Journal Article
·
· Numerische Mathematik
- Univ. degli Studi di Milano-Bicocca, Milan (Italy)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Univ. of Vienna, Vienna (Austria)
An explicit and computable error estimator for the hp version of the virtual element method (VEM), together with lower and upper bounds with respect to the exact energy error, is presented. Such error estimator is employed to provide, following the approach of Melenk and Wohlmuth (Adv Comput Math 15(1–4):311–331, 2001), hp adaptive mesh refinements for very general polygonal meshes. In addition, a novel VEM hp Clément quasi-interpolant, instrumental for the a posteriori error analysis, is introduced. The performances of the adaptive method are validated by a number of numerical experiments.
- Research Organization:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- LDRD; USDOE
- Grant/Contract Number:
- 89233218CNA000001
- OSTI ID:
- 1542818
- Report Number(s):
- LA-UR--18-23445
- Journal Information:
- Numerische Mathematik, Journal Name: Numerische Mathematik Journal Issue: 1 Vol. 143; ISSN 0029-599X
- Publisher:
- Springer Berlin HeidelbergCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Residual-based a posteriori error estimation for hp-adaptive finite element methods for the Stokes equations
Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates
Journal Article
·
Tue Dec 17 23:00:00 EST 2019
· Journal of Numerical Mathematics
·
OSTI ID:1649541
Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates
Journal Article
·
Wed Dec 31 23:00:00 EST 2014
· Journal of Computational Physics
·
OSTI ID:22382155