Origin of Rashba Spin-Orbit Coupling in 2D and 3D Lead Iodide Perovskites
Journal Article
·
· Scientific Reports
- Univ. of Georgia, Athens, GA (United States). Dept. of Physics & Astronomy; DOE/OSTI
- Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemistry
- Univ. of Georgia, Athens, GA (United States). Dept. of Physics & Astronomy
- Phenikaa Univ., Hanoi (Vietnam). Dept. of Materials Science and Engineering
- Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). National Security Directorate
isaWhittaker-Brooks2 & Tho D. Nguyen1* We studied spin dynamics of charge carriers in the superlattice-like Ruddlesden-Popper hybrid lead iodide perovskite semiconductors, 2D (BA)2(MA)Pb2I7 (with MA= CH3NH3, and BA= CH3(CH2)3NH3), and 3D MAPbI3 using the magnetic field effect (MFE) on conductivity and electroluminescence in their light emitting diodes (LEDs) at cryogenic temperatures. The semiconductors with distinct structural/ bulk inversion symmetry breaking, when combined with colossal intrinsic spin–orbit coupling (SOC), theoretically give rise to giant Rashba-type SOC. We found that the magneto-conductance (MC) magnitude increases monotonically with the emission intensity and saturates at ≈0.05% and 0.11% for the MAPbI3 and (BA)2(MA)Pb2I7, respectively. The magneto-electroluminescence (MEL) response with similar line shapes as the MC response has a significantly larger magnitude, and essentially stays constant at ≈0.22% and ≈0.20% for MAPbI3 and (BA)2(MA)Pb2I7, respectively. The sign and magnitude of the MC and MEL responses can be quantitatively explained in the framework of the Δg-based excitonic model using rate equations. Remarkably, the width of the MEL response in those materials linearly increases with increasing the applied electric field, where the Rashba coefficient in (BA)2(MA) Pb2I7 is estimated to be about 7 times larger than that in MAPbI3. Our studies might have significant impact on future development of electrically-controlled spin logic devices via Rashba-like effects
- Research Organization:
- Savannah River Site (SRS), Aiken, SC (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
- Grant/Contract Number:
- AC09-08SR22470
- OSTI ID:
- 1628976
- Journal Information:
- Scientific Reports, Journal Name: Scientific Reports Journal Issue: 1 Vol. 10; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation
Magneto-electroluminescence response in 2D and 3D hybrid organic–inorganic perovskite light emitting diodes
Journal Article
·
Thu Aug 15 20:00:00 EDT 2019
· APL Materials
·
OSTI ID:1611841
Magneto-electroluminescence response in 2D and 3D hybrid organic–inorganic perovskite light emitting diodes
Journal Article
·
Tue Jan 28 19:00:00 EST 2020
· Journal of Chemical Physics
·
OSTI ID:1802682