A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing pKa models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/pKa unit, suggesting a bond shortening of ~0.02 Å/pKa unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = –0.2 kcal/mol/pKa unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = –2.0 kcal/mol/pKa unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ~300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution.
Kraut, Daniel A., et al. "Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole." PLoS Biology (Online), vol. 4, no. 4, Mar. 2006. https://doi.org/10.1371/journal.pbio.0040099
Kraut, Daniel A., Sigala, Paul A., Pybus, Brandon, Liu, Corey W., Ringe, Dagmar, Petsko, Gregory A., & Herschlag, Daniel (2006). Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole. PLoS Biology (Online), 4(4). https://doi.org/10.1371/journal.pbio.0040099
Kraut, Daniel A., Sigala, Paul A., Pybus, Brandon, et al., "Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole," PLoS Biology (Online) 4, no. 4 (2006), https://doi.org/10.1371/journal.pbio.0040099
@article{osti_1627145,
author = {Kraut, Daniel A. and Sigala, Paul A. and Pybus, Brandon and Liu, Corey W. and Ringe, Dagmar and Petsko, Gregory A. and Herschlag, Daniel},
title = {Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole},
annote = {A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing pKa models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/pKa unit, suggesting a bond shortening of ~0.02 Å/pKa unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = –0.2 kcal/mol/pKa unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = –2.0 kcal/mol/pKa unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ~300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution.},
doi = {10.1371/journal.pbio.0040099},
url = {https://www.osti.gov/biblio/1627145},
journal = {PLoS Biology (Online)},
issn = {ISSN 1545-7885},
number = {4},
volume = {4},
place = {United States},
publisher = {Public Library of Science},
year = {2006},
month = {03}}
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 317, Issue 1540, p. 415-423https://doi.org/10.1098/rsta.1986.0051