Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses
more »
- Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Epidemiology; DOE/OSTI
- Univ. of Wisconsin, Madison, WI (United States). School of Veterinary Medicine. Dept. of Pathobiological Sciences. Influenza Research Inst.
- Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Epidemiology
- Univ. of Washington, Seattle, WA (United States). School of Medicine. Dept. of Microbiology
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Biological Sciences Division
- Univ. of Washington, Seattle, WA (United States). School of Medicine. Dept. of Microbiology; Univ. of Washington, Seattle, WA (United States). Washington National Primate Research Center
- Univ. of Wisconsin, Madison, WI (United States). School of Veterinary Medicine. Dept. of Pathobiological Sciences. Influenza Research Inst.; Univ. of Tokyo (Japan). Inst. of Medicine. Dept. of Microbiology and Immunology. Division of Virology; Univ. of Tokyo (Japan). Dept. of Special Pathogens. Inst. of Medical Science. International Research Center for Infectious Diseases; ERATO Infection-Induced Host Responses Project, Saitama (Japan)
- Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Epidemiology; Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Microbiology and Immunology
The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
- Grant/Contract Number:
- AC06-76RL01830
- OSTI ID:
- 1626128
- Journal Information:
- mBio (Online), Journal Name: mBio (Online) Journal Issue: 3 Vol. 5; ISSN 2150-7511
- Publisher:
- American Society for Microbiology (ASM)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape
Egyptian H5N1 Influenza Viruses—Cause for Concern?
Omics-Lethal Human Viruses, Influenza A Experiment ICL106
Journal Article
·
Mon Jan 15 19:00:00 EST 2018
· Proceedings of the National Academy of Sciences of the United States of America
·
OSTI ID:1421337
Egyptian H5N1 Influenza Viruses—Cause for Concern?
Journal Article
·
Wed Nov 14 19:00:00 EST 2012
· PLoS Pathogens
·
OSTI ID:1629345
Omics-Lethal Human Viruses, Influenza A Experiment ICL106
Dataset
·
Sun Jan 17 23:00:00 EST 2021
·
OSTI ID:1661916