Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; DOE/OSTI
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics
- Centre National de la Recherche Scientifique (CNRS) (France). Information Genomique et Structurale; Aix-Marseille Univ., Marseille (France). Inst. de Microbiologie de la Mediterranee, Parc Scientifique de Luminy
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); European X-ray Free-Electron Laser (XFEL), Hamburg (Germany)
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Saclay (France)
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Uppsala Univ. (Sweden). Molekyl- och kondenserade materiens fysik, Institutionen för Fysik och Astronomi
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Univ. of Melbourne (Australia)
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); National Univ. of Singapore (Singapore). Centre for BioImaging Sciences
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
- Synchrotron SOLEIL, Saint Aubin (France)
- SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
- Max Planck Inst. for Medical Research, Heidelberg (Germany)
- Max Planck Inst. for Medical Research, Heidelberg (Germany); Max Planck Advanced Study Group, Hamburg (Germany). Center for Free Electron Laser Science
- Max Planck Advanced Study Group, Hamburg (Germany). Center for Free Electron Laser Science; Max Planck Inst. fuer Kernphysik, Heidelberg (Germany)
- Max Planck Inst. for Medical Research, Heidelberg (Germany); Max Planck Advanced Study Group, Hamburg (Germany). Center for Free Electron Laser Science; Kansas State Univ., Manhattan, KS (United States). Dept. of Physics, J.R. Macdonald Lab.
- Max Planck Advanced Study Group, Hamburg (Germany). Center for Free Electron Laser Science; Max Planck Inst. fuer Kernphysik, Heidelberg (Germany); Kansas State Univ., Manhattan, KS (United States)Dept. of Physics, J.R. Macdonald Lab.
- PNSensor GmbH, Munich (Germany)
- Max Planck Inst. fuer Halbleiterlabor, Munich (Germany); Max Planck Inst. fuer Extraterrestrische Physik, Garching (Germany)
- PNSensor GmbH, Munich (Germany); Univ., Siegen (Germany)
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Max Planck Inst. fuer Kernphysik, Heidelberg (Germany)
- Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP)
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Univ. of Hamburg (Germany)
- Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; European X-ray Free-Electron Laser (XFEL), Hamburg (Germany)
Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); Swedish Research Council; Knut and Alice Wallenberg Foundation; Max Planck Society; European Research Council; Röntgen-Ångström Cluster; Stiftelsen Olle Engkvist Byggmästare
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1624547
- Journal Information:
- Scientific Data, Journal Name: Scientific Data Journal Issue: 1 Vol. 3; ISSN 2052-4463
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers
Single-Shot Femtosecond X-ray Diffraction from Randomly Oriented Ellipsoidal Nanoparticles