Multi-Objective Optimization for Size and Resilience of Spiking Neural Networks
- University of Minnesota
- ORNL
Inspired by the connectivity mechanisms in the brain, neuromorphic computing architectures model Spiking Neural Networks (SNNs) in silicon. As such, neuromorphic architectures are designed and developed with the goal of having small, low power chips that can perform control and machine learning tasks. However, the power consumption of the developed hardware can greatly depend on the size of the network that is being evaluated on the chip. Furthermore, the accuracy of a trained SNN that is evaluated on chip can change due to voltage and current variations in the hardware that perturb the learned weights of the network. While efforts are made on the hardware side to minimize those perturbations, a software based strategy to make the deployed networks more resilient can help further alleviate that issue. In this work, we study Spiking Neural Networks in two neuromorphic architecture implementations with the goal of decreasing their size, while at the same time increasing their resiliency to hardware faults. We leverage an evolutionary algorithm to train the SNNs and propose a multiobjective fitness function to optimize the size and resiliency of the SNN. We demonstrate that this strategy leads to well-performing, small-sized networks that are more resilient to hardware faults.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE; USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1606935
- Country of Publication:
- United States
- Language:
- English
Similar Records
Resilience and Robustness of Spiking Neural Networks for Neuromorphic Systems
Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution
Training Spiking Neural Networks Using Combined Learning Approaches
Conference
·
Wed Jul 01 00:00:00 EDT 2020
·
OSTI ID:1671419
Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution
Conference
·
Tue Jun 01 00:00:00 EDT 2021
·
OSTI ID:1814329
Training Spiking Neural Networks Using Combined Learning Approaches
Conference
·
Mon Nov 30 23:00:00 EST 2020
·
OSTI ID:1760122