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(SNNs) implementations in silicon [4], [7]–[9]. However, neu-
romorphic hardware implementations of SNNs tend to suffer
from environmental perturbations due to current or voltage
variations or bit flips, among others, with the synapse weight
being the most critical part susceptible to perturbations [10],
[11]. The perturbations that lead to a change in the synaptic
parameters of the implemented spiking neural network often
result in a greatly degraded performance of the network [11].
At the same time, smaller sensors require smaller networks
due to power restrictions [12]. Thus, taking neuromorphic
computing to the next step and developing small size SNNs
that are also resilient to perturbations of their parameters is a
necessity.

In this work we leverage an evolutionary optimization
framework called EONS [13], [14] to train spiking neural
networks. This evolutionary approach has been shown to lead
to well-performing SNNs, as demonstrated on several machine
learning and control tasks [6], [15], [16]. At the core of the
evolutionary (genetic) algorithm is the fitness function which
evaluates every network in a population. We propose a multi-
objective fitness function which incorporates a penalty for
the number of neurons in a network as a way to generate
smaller sized networks. We further include the performance
of several variations of the network that is currently evaluated
to produce networks that are resilient to some particular
kind of perturbations that are possible to be encountered in
the hardware. We show that this is a flexible approach for
generating well performing, small sized SNNs that are more
resilient to hardware faults.

II. BACKGROUND

Reducing the size of artificial neural networks is an ongoing
quest in science and technology, ever more so with the
development of low-power devices for machine learning [17].
In the area of deep learning, there are many different reduction
and pruning methods that aim to decrease the size of the
powerful but over-parameterized deep neural networks that are
deployed on traditional CPU or GPU architectures [18]–[21].
On the other hand, for spiking neural networks, more efforts
have been devoted to their training [8], [22] and not so much to
their efficiency. The problems of size reduction and hardware
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I. INTRODUCTION

With the advent of internet of things, smaller sensors and
smarter environments are on the rise [1]. This increases the
demand for low power hardware that can preform machine
learning tasks [2], [3]. Neuromorphic computing architec-
tures are promising hardware architectures that fulfill these
requests [4]–[6]. These architectures are non-von Neumann
chips that are inherently low power and parallel as they
model a biological neural system via Spiking Neural Networks
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perturbation resilience (noise sensitivity) for SNNs have been
considered in limited scenarios. For example, for sparse SNNs,
there are algorithms that map an SNN to a specific hardware,
transforming the SNN in order to match some of the hardware
constraints, such as power consumption or memory access
latency [23], [24]. However, these methods either require
sparse SNNs already or they sparsify the SNN, but there are
no guarantees that the initial accuracy of the network will be
preserved after the transformation. In this work we propose
a multi-objective evolutionary training method for SNNs that
optimizes the network for hardware constraints such as lower
power consumption and fault tolerance, while providing some
confidence in the performance of the network via the training
and testing accuracy.

Multi-objective evolutionary training for neural networks
has been used in several works though the objectives have been
mostly centered around performance metrics or classification
sensitivity or specificity [25], [26]. Furthermore, training spik-
ing neural networks to be fault tolerant, i.e., addressing certain
hardware fault tolerance limitations, to the best our knowledge,
is a research topic that is only beginning to emerge. For
example, only a very recent work addresses the noise-handling
limitations of hardware implementations of spiking neurons
from a software (algorithmic) perspective [27]. The work in
[27] adds noise to the threshold of the spiking neuron in the
process of evolutionary training of the SNN, thus effectively
making the trained SNN more resilient to noise fluctuations
in hardware.

In this work, we consider multi-objective fitness function
in the evolutionary process to train a network that is resilient
to synaptic perturbations, which are one of the most critical
structures in neuromorphic hardware that are susceptible to
perturbations [10], [11]. The other objective in the multi-
objective fitness function is to minimize the number of neurons
in the SNN. We show that by penalizing for the number of
neurons we can significantly reduce the number of synapses
in the network as well. We demonstrate these results on two
neuromorphic implementations and via several applications.
We explain the genetic algorithm and the neurmorphic imple-
mentations considered in the following subsections.

A. Genetic Algorithm for Training SNNs

In this work, we use a genetic algorithm-based training
approach called Evolutionary Optimization for Neuromorphic
Systems (EONS) [13]. This approach evolves both the parame-
ters of the network (e.g., weights of synapses and thresholds of
neurons), as well as the structure of the network (e.g., number
of neurons and synapses and how they are connected). In all
of the experiments, the following parameters were used during
the evolutionary process: population size of 100, crossover rate
of 0.5, mutation rate of 0.9, and merge rate of 0.1.

B. DANNA2

DANNA2 (Dynamic Adaptive Neural Network Arrays)
[6] is a synchronous digital neuromorphic architecture with
integrate-and-fire neurons and optional synaptic plasticity.

Networks are represented as a directed graph in a two-
dimensional space using neurons as graph nodes and synapses
as edges. When a neuron’s charge exceeds the configured
10-bit threshold, the neuron fires and enters a configurable
refractory period in which it temporarily may not fire again.
Fires from a neuron travel along synapses with an individually
configurable 4-bit temporal delay and signed 9-bit weight
value.

DANNA2 may be simulated on a traditional CPU or be
implemented on an FPGA or ASIC. In this work, DANNA2
sparse is used which allows for a network to be converted
into an optimized hardware implementation. The resulting
hardware directly builds the network graph and removes any
unnecessary functionality which allows for improved effi-
ciency.

C. NIDA

Neuroscience-inspired dynamic architectures or NIDA [28]
is a simple spiking neural network implementation using
integrate-and-fire neurons and assumes analog synaptic weight
values (specifically, floating point values between -1 and 1).
Neurons are laid out in three-dimensional space and the delays
between neurons depend on the distance between neurons in
the space. NIDA is implemented in simulation only.

III. MAIN RESULTS

In this section we present the main contribution of this
article: a multi-objective fitness function that allows for the
evolution of smaller-size SNNs that are also resilient to par-
ticular hardware perturbations of the synaptic weights. Another
contribution of this article is the analysis of two network
size-reducing strategies: during-training size optimization and
post-training pruning. Namely, we provide empirical results
that suggest it is better to constrain the size of a network
during the training process, as opposed to pruning the network
after training. We also show that penalizing for the number
of neurons during the process of training actually leads to a
much smaller number of synapses as well. The next subsection
explores these two different size-reduction strategies.

A. Size Optimization

There are two main approaches to reducing the size of a
spiking neural network: a post-training approach and during-
training approach. First, we examine the post-training ap-
proach of pruning the network by removing neurons that
have low spiking frequency. The hypothesis is that those low-
frequency neurons have a small contribution to the frequency
of spiking of the output neurons and thus removing them
will not have a significantly negative effect on the accuracy.
We perform this post-training pruning analysis on three ap-
plications for the digital neuromorphic architecture DANNA2
[6]. The applications we consider are the following: a pole-
balancing control task (abbreviated as PB), a classification task
on satellite radio signal data, and an Atari-like game Asteroids.
Table I contains statistics from 100 spiking neural networks
that have been trained via an evolutionary algorithm which



optimizes only for performance. We can see that the average
spiking frequency of internal neurons is much lower than the
spiking frequency of the input and output neurons. This is
an indication that we could prune a large number of internal
neurons from a network without a significant negative effect
on performance of the network.

TABLE I
STATISTICS FROM 100 SPIKING NEURAL NETWORKS FOR DIGITAL

IMPLEMENTATION. THE AVERAGE SPIKING FREQUENCY OF MOST OF THE
INTERNAL NEURONS IS AN ORDER OF MAGNITUDE LESS THAN THE

SPIKING FREQUENCY OF INPUT AND OUTPUT NEURONS.

PB Radio Asteroids
Avg. number
of internal neurons 9.36 77.8 75.09

Avg. number
of synapses 32.61 139.19 438.18

Avg. spiking freq.
of internal neurons 0.0015 0.036 0.00016

Avg. spiking freq.
of input neurons 0.033 0.269 0.00064

Avg. spiking freq.
of output neurons 0.022 0.266 0.0013

Avg. performance 292.2 (sec) 0.777 (accuracy) 214.9 (score)

Thus, we prune the internal neurons whose spiking fre-
quency is an order of magnitude less than the spiking fre-
quency of the output neurons. Specifically, we prune neurons
whose frequency f is such that f < 0.1 ∗ favg(outputs),
where favg(outputs) denotes the average spiking frequency
of the output neurons. When performing such pruning, we
get networks that have most of the internal neurons of the
original network pruned, as shown in Table II. Though the
number of internal neurons and the number of synapses
is very significantly decreased, the loss of performance is
comparatively small, as we can see from Table II.

TABLE II
STATISTICS FROM 100 SPIKING NEURAL NETWORKS FOR DIGITAL

IMPLEMENTATION THAT WERE PRUNED BASED ON LOW FREQUENCY
SPIKING INTERNAL NEURONS.

PB Radio Asteroids
Avg. number
of internal neurons 2.43 4.97 35.24

Avg. number
of synapses 21.53 62.52 393.4

Avg. Performance 288.7 (sec) 0.778 (accuracy) 208.3 (score)

These results lead to the question of whether it is worth
implementing a penalty for the size of the network during the
training process, or whether post-training pruning performs
better, i.e. leads to a smaller size and higher performance of
the network. To answer this, we generate 100 networks from
the same applications, but in this case, during the evolutionary
optimization training of these networks, we penalize the fitness
function for the number of neurons. In particular, the fitness
function F (N) for a network N that we consider is the
following:

F (N) = performance(N)∗

∗ (1− num. of hidden neurons(N)

total number of neurons(N)
∗ δ) ,

where δ = 0.001 has been experimentally chosen. Evolving
networks in this manner we get the best results for both size
and performance of the networks, as shown in Table III. We
also note that the number of synapses in the resulting networks
is also very low.

TABLE III
STATISTICS FROM 100 SPIKING NEURAL NETWORKS FOR DIGITAL

IMPLEMENTATION THAT WERE EVOLVED WITH A MULTI-OBJECTIVE
FITNESS THAT OPTIMIZES FOR PERFORMANCE AND FOR THE NUMBER OF

NEURONS IN THE NETWORK.

PB Radio Asteroids
Avg. number
of internal neurons 5.08 0.56 1.3

Avg. number
of synapses 23.41 122.9 147.17

Avg. performance 297.5 (sec) 0.788 (accuracy) 235.22 (score)

Furthermore, as we can see from Table III, using a multi-
objective fitness function to generate smaller sized networks
even improves the average performance of the networks.
Hence, we keep the size-penalty in the fitness function in our
further experiments and we choose to optimize networks for
size during training instead of the post-training pruning. We
note however that we observed longer training time with the
multi-objective fitness function, thus if computing resources
for training are limited, the post-training pruning approach is
a good alternative for decreasing the size of a network.

B. Size and Resilience Optimization

Though optimizing for size and performance during training
gave better results than pruning the network post-training,
because the number of internal neurons is very low, the
resulting size-optimized networks have many input to output
synapses. We performed a simple perturbation experiment to
test the resiliency to synaptic weight perturbations of these
size-optimized networks. Namely, we randomly chose 10
networks out of those 100 size-optimized networks from each
of the pole balance and the radio application networks. We
perturbed those networks by randomly sampling 1, 2, 3, 4 and
5 of its synapses for 100 times consecutively and flipping one
bit in the weight of the sampled synapse. Thus, we get 5000
perturbed networks in total. We chose the 8th bit from the
sampled synapses’ weights to be flipped. Having networks
that are resilient to such a bit flip change or similar changes
is especially important for sensors that are in an environment
with high radioactivity, where, for example, bit flip resilience
is crucial to the sensors reliability [29]. But the size and
performance optimized networks are observed to be sensitive
to such perturbations. Namely, in the experiment many of the
resulted perturbed networks have their performance signifi-
cantly affected, as shown in Figure 1. Namely, 35.3% of the
perturbed networks for the pole balance task have balancing
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Fig. 1. Perturbing 10 of the size-optimized networks by flipping their 8th

bit. (a) Pole balance application: many of the synapses are very sensitive to
this perturbation as more than a third of the resulting generated (perturbed)
networks have their balancing time degrading to zero. (b) Radio application:
though the SNNs for this application are less sensitive to perturbations, there
is still a significant percentage of synapses whose perturbation leads to loss
of accuracy.

time of less than 50 sec, while the optimal balancing time for
this app is 300 sec. For the radio application, the evolutionary
algorithm generates networks that are much more resilient to
bit flips when compared to the SNNs for the pole balance
application, but here too we have that almost 7% of the
perturbed networks have accuracy less than 60%, while the
un-perturbed size-optimized networks all had accuracy greater
than 60%. Ultimately, we’d like the percentage of perturbed
networks that lose their good performance to be as small as
possible.

Given these observations we propose the following multi-
objective fitness function F (N) for spiking neural network
N , that penalizes both for the number of neurons and for the
sensitivity to perturbations:

F (N) = w1 ∗ performance(N)∗

∗ (1− num. of hidden neurons
total number of neurons

∗ δ)+

+ w2 ∗ (
∑n

i=1 performance of variation(Ni)

n
)

where δ, n, w1, w2 are parameters that are to be chosen
experimentally with the following constraints: w1, w2 ∈ [0, 1]
and w1 + w2 = 1; δ ∈ (0, 1); n ≥ 1. By Ni we denote a
variation of the network whose fitness is currently evaluated.
The variation will depend on the type of perturbation that
we are expecting to see in hardware. For example, if we are
considering a digital implementation of a SNN, then a typical
hardware fault is a bit flip. Then, one type of variation of the
network that we can consider is a network that has one (or
more) of its synapse weights changed to a weight that has one
(or more) of its bits flipped.

C. Multi-objective Evolutionary Optimization Applications

We apply the multi-objective function that optimizes for size
and resilience to applications from two types of neuromorphic
implementations: one where the weights are integer values and
one which admits floating point weights. Details about the
digital implementation with integer weights (DANNA2) can
be found in [6] and details about the floating-point weights
implementation (NIDA) can be found in [28]. The main
distinction of these two implementations for the purposes of
this work, is that in the digital implementation the synaptic
weights are integers in the range [−1024, 1024] and in the
NIDA implementation synapses admit floating point weights
between −1 and 1. In all of our experiments, the parameters
for the multi-objective fitness function stated in Equation III-B
were experimentally chosen as δ = 0.001 n = 5, and w1 =
w2 = 0.5. For the Pole balance task, all the networks were
trained until they achieved training balancing time of 300.02
seconds; for the radio task, all the networks were trained until
they achieved accuracy of 77% or greater; for the asteroids
app, all the networks were trained for 50 epochs. While for
the resiliency-and-size optimized networks we achieve better
fault tolerance, the training time was naturally longer than if
we were optimizing networks for size and performance only.
The experiments are further detailed below.

DANNA2 Pole Balance

In a digital implementation, the type of hardware fault that
can be experienced is a bit flip. As flipping the 8th bit of
digitally implemented SNNs led to significant loss of perfor-
mance in the performance-and-size only optimized networks,
we considered evolving networks that are resilient to the flip
of the 8th bit. To this end, we considered variations in which
every synapse has the 8th bit flipped with probability 0.1.
In summary, the SNN synaptic weight operations considered
were the following:

• Perturbation: a sampled synapse has 8th bit flipped.



• Variations: 5 variations were considered, and in each
network variation, each synapse has its 8th bit flipped
with probability 0.1.

As we can see from Figure 2, evolving the networks
with the resilience to perturbations taken into account in the
fitness function leads to much more resilient networks (fewer
sensitive synapses). In Figure 2(b), a Gaussian is fitted for
both the resilience metric of the resiliency optimized and
the resilience unoptimized networks. The resilience metric for
each network N that we calculated is:

optimal performance− network performance
optimal performance

(1)

where for the pole balance task, optimal performance
is 300.02 seconds. As seen in Figure 2(b), the resilience-
optimized networks have a twice higher resiliency mean than
the size-and-performance only optimized SNNs.

NIDA Polebalance
In the NIDA implementation, the type of hardware fault that

can be experienced is a “diminishing weight”. Namely, due to
current and voltage drops, the weight value can diminish closer
to zero. Thus, the synaptic weight operations considered were
the following:

• Perturbation: a sampled synapse is diminished by ε ∈
(0.005, 0.05).

• For the multi-objective fitness function, 5 variations are
considered for resilience. In each variation, every synapse
is sampled with probability 0.5 and is diminished by 0.05.

The results, showing that the resilience optimized networks are
indeed resilient to these perturbations, while the size-optimized
networks are not, are shown in Figure 3.

NIDA Radio
The performance-and-size-optimized networks for the Radio

signal classification application were more resilient to dimin-
ishing weight changes, as most of the networks perturbed
in such a way still led to classification greater than 75%.
However, the networks are less resilient to decrements by
ε ∈ (0.008, 0.1). Thus, the synaptic weight operations con-
sidered were the following:

• A sampled synapse is decreased by ε ∈ (0.008, 0.1).
• For the multiobjective fitness function, 5 variations for re-

silience were considered. In each variation, every synapse
is decreased by ε ∈ (0.008, 0.1), where ε is sampled
uniformly from the interval (0.008, 0.1).

The results are show in Figure 4. Again, the negative effect
on performance in the resilience optimized perturbed networks
is not present.

NIDA Asteroids
For the asteroid application, we perform a perturbation

that diminishes the synaptic weights by ε ∈ (0.001, 0.1). In
this application we have three metrics: the time the player
stayed alive, its score, and the total shooting points the player
has acquired. We chose the score as a comparison metric
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Fig. 2. Perturbing 20 size-optimized and 20 size-and-resilience optimized
networks by flipping their 8th bit: we sample 1 through 5 synapses for 100
times for each of those networks and flip the 8th bit of the sampled synapses.
(a) Histogram of the experiment. (b) Fitted Gaussians from resiliency scores.

between the networks that were optimized for size only and the
networks optimized for size and resilience. We have trained
10 networks for 50 epochs in both scenarios. The experiments
involved the following synaptic operations:

• Perturbation: a sampled synapse is diminished by ε ∈
(0.001, 0.1).

• Variations: in the multiobjective fitness, 5 variations are
considered. For every synapse in each variation, we
diminish its weight by ε = 0.1 with probability 0.5.

The results are show in Figure 5. Again, the resiliency opti-
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Fig. 5. Perturbing 10 of the size-optimized and size-and-resilience optimized
networks by diminishing them by ε ∈ (0.001, 0.1): we sample 1 through
5 synapses for 100 times for each of those networks and diminish the
sampled synapses. The size-and-resilience optimized networks show better
performance when perturbed: they have higher mean and median for the
score of perturbed networks. (a) Performance of perturbed networks when
networks were evolved with performance, size and perturbation resilience
optimization. (b) Performance of perturbed networks when networks were
trained with performance and size optimization.

mized networks show higher mean and median in performance
when perturbed than the size and performance optimized
SNNs.

IV. CONCLUSION AND DISCUSSION

In this work we propose a multi-objective fitness optimiza-
tion function for training Spiking Neural Networks via an



evolutionary algorithm. This function optimizes for perfor-
mance, size and perturbation resilience of the network. The
factor that accounts for perturbation resilience involves several
variations of the network whose fitness is evaluated and takes
into account their performance. The network variations that we
consider depend on the type of perturbation we can encounter
due to hardware faults. Another contribution of this article is
an empirical comparison of two size-reduction methods, where
we show that in-training size constraints lead to better results
in terms of network size and accuracy as opposed to pruning
networks post-training. In summary, this work shows that al-
gorithmic, software-side solutions to producing spiking neural
networks which are resilient to hardware faults and satisfy
hardware constraints are possible. As future work, it would be
interesting to consider finding good initialization techniques
for the seed networks in the evolutionary algorithm as well
as performing a hyperparameter analysis of the parameters in
the multi-objective fitness function. This would allow for a
faster convergence to well-performing and resilient networks,
trained by utilizing the multi-objective fitness function.
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