Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Modification of radiation-induced strand breaks by glutathione: Comparison of single- and double-strand breaks in SV40 DNA

Journal Article · · Radiation Research
DOI:https://doi.org/10.2307/3579229· OSTI ID:160178
; ;  [1]
  1. Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)
A number of investigations have suggested that the widely observed oxygen enhancement of radiation-induced cell killing or intracellular DNA damage requires the presence of glutathione (GSH) or other thiols. We have adapted an in vitro model system to investigate the effects of GSH on radiation-induced DNA double-strand breaks (DSBs), lesions felt to be critical to cell death. Superhelical SV40 DNA, 25 {mu}g/ml, was irradiated in air or nitrogen in the presence of 0-20 mM GSH and single-strand breaks (SSBs) and DSBs were measured using neutral gel electrophoresis/ethidium bromide fluorescence. Control experiments demonstrated that a substantial concentration of free SH was still present after irradiation. Dose-response curves for SSBs and DSBs in air or nitrogen were predominantly linear at all GSH concentrations tested from 0-20 mM, except for 20 mM GSH in nitrogen, indicating that both SSBs and DSBs in nitrogen at 20 mM GSH, suggesting additional damage, rather than the expected additional protection. The possible mechanism for a damaging effect from GSH is discussed. Oxygen enhancement ratios (OERs) were calculated from the slopes of dose-response curves. The OERs for SSBs did not differ substantially from those for DSBs at the same [GSH], contrary to the observations of Prise. The OERs for SSBs and DSBs peaked at 6.5 and 8, respectively, at 5 mM GSH. These similarities suggest that the much lower OERs (2.5-3.0) generally reported for radiation killing of cells, which also typically contain about 5 mM GSH, cannot be accounted for by differences in OER between lethal lesions, represented by DSBs, and nonlethal lesions, represented by SSBs. In view of the present results, another possible explanation, that intracellular compounds other than reduced thiols are important in the chemical modification of the response of DNA to radiation, seems to be much more likely. 41 refs., 5 figs.
Sponsoring Organization:
USDOE
OSTI ID:
160178
Journal Information:
Radiation Research, Journal Name: Radiation Research Journal Issue: 1 Vol. 144; ISSN 0033-7587; ISSN RAREAE
Country of Publication:
United States
Language:
English

Similar Records

Role of scavenger-derived radicals in the induction of double-strand and single-strand breaks in irradiated DNA
Journal Article · Mon May 01 00:00:00 EDT 1995 · Radiation Research · OSTI ID:81175

Further studies of the induction and intracellular repair of DNA strand breaks using intranuclear SV40 as a test system
Journal Article · Wed Nov 30 23:00:00 EST 1988 · Radiat. Res.; (United States) · OSTI ID:6537481

Effects of BSO and DEM on thiol-level and radiosensitivity in HeLa cells
Journal Article · Wed Aug 01 00:00:00 EDT 1984 · Int. J. Radiat. Oncol., Biol. Phys.; (United States) · OSTI ID:6500692