Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides
- Sandia National Lab. (SNL-CA), Livermore, CA (United States)
A series of titanium alkoxides ([Ti(OR)4] (OR = OCH(CH3)2 (OPri), OC(CH3)3 (OBut), and OCH2C(CH3)3 (ONep)) were modified with a set of substituted hydroxyl-benzaldehydes [HO-BzA-Lx: x = 1, 2-hydroxybenzaldehyde (L = H), 2-hydroxy-3-methoxybenzaldehyde (OMe-3), 5-bromo-2-hydroxybenzaldehyde (Br-5), 2-hydroxy-5-nitrobenzaldehyde (NO2-5); x = 2, 3,5-di-tert-butyl-2-hydroxybenzaldehyde (But-3,5), 2-hydroxy-3,5-diiodobenzaldehyde (I-3,5)] in pyridine (py). Instead of the expected simple substitution, each of the HO-BzA-Lx modifiers were reduced to their respective diol [(py)(OR)2Ti(κ2(O,μ-O')(OC6H4–x(CH2O)-2)(L)x] (OR = OPri, x = 1, L = H (1a), OMe-3 (2a), Br-5 (3a·py), NO2-5 (4a·4py); x = 2, But-3,5 (5a), I-3,5 (6a), ONep; x = 1, L = H (1b), OMe-3 (2b), Br-5 (3b·py), NO2-5 (4b); x = 2, But-3,5 (5b), I-3,5 (6b·py)), as identified by single crystal X-ray studies. The 1H NMR spectral data were complex at room temperature but simplified at high temperatures (70 °C). Diffusion ordered spectroscopy (DOSY) NMR experiments indicated that 2a maintained the dinuclear structure in a solution independent of the temperature, whereas 2b appears to be monomeric over the same temperature range. On the basis of additional NMR studies, the mechanism of the reduction of the HO-BzA-Lx to the dioxide ligand was thought to occur by a Meerwein–Pondorf–Verley (MPV) mechanism. The structures of 1a–6b appear to be the intermediate dioxide products of the MPV reduction, which became “trapped” by the Lewis basic solvate.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1601436
- Report Number(s):
- SAND--2019-10594J; 679189
- Journal Information:
- Inorganic Chemistry, Journal Name: Inorganic Chemistry Journal Issue: 1 Vol. 59; ISSN 0020-1669
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Synthesis and Characterization of Tris(trimethylsilyl)siloxide Derivatives of Early Transition Metal Alkoxides That Thermally Convert to Varied Ceramic–Silica Architecture Materials
Synthesis and characterization of novel yttrium-copper alkoxide clusters