Orientation Relationships of Pure Tin on Single Crystal Germanium Substrates
Journal Article
·
· Journal of Electronic Materials
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Materials Science Div.
- Purdue Univ., West Lafayette, IN (United States). School of Materials Engineering
The limited number of independent β-Sn grain orientations resulting from the difficulty in nucleating β-Sn during solidification of Sn-based solders has a large effect on the resulting β-Sn grain size and, hence, on overall solder joint performance and reliability. This study analyzes the efficacy of Ge as a heterogeneous nucleation agent for β-Sn by observing the morphologies and orientation relationships of as-deposited, solid-state annealed, and liquid-state annealed pure Sn films on single crystal Ge (100), (110), and (111) substrates. Here, the results from scanning electron microscopy and electron backscatter diffraction showed that the as-deposited Sn films all deposited with a Sn (001)|| z-axis texture, regardless of the underlying Ge substrate orientation. Solid-state annealing at 150 °C for 5 min did not result in significant dewetting of the Sn films, and the films maintained their as-deposited texture of Sn (001)|| z-axis, regardless of the underlying Ge substrate orientation. Liquid-state annealing at 235 °C for 1 min resulted is large-scale dewetting of the Sn films and re-orientation of the Sn films on the various Ge substrates. After solidification, the Ge (100) and (110) single crystal substrates produced patches of dewetted grains of the same orientation but there were no consistent Sn grain textures after liquid-state annealing, suggesting no single orientation relationship. In contrast, solidification on Ge (111) single crystal substrates resulted in isolated grains with a single Sn film texture and an orientation relationship of (100)Sn∥(111)Ge and [100]Sn∥[110]Ge. Density Functional Theory simulations of the experimentally observed Ge (111) sample orientation relationship and the Ge/Sn cube-on-cube orientation relationship suggest favorable relative interfacial binding energies for both interface orientations.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC52-07NA27344
- OSTI ID:
- 1573449
- Report Number(s):
- LLNL-JRNL--774079; 966406
- Journal Information:
- Journal of Electronic Materials, Journal Name: Journal of Electronic Materials Journal Issue: 1 Vol. 49; ISSN 0361-5235
- Publisher:
- SpringerCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Orientation selection and microstructural evolution of epitaxial platinum films on (001) magnesium oxide
Heteroepitaxy of large grain Ge film on cube-textured Ni(001) foils through CaF2 buffer layer
Conference
·
Sat Dec 31 23:00:00 EST 1994
·
OSTI ID:6722243
Heteroepitaxy of large grain Ge film on cube-textured Ni(001) foils through CaF2 buffer layer
Journal Article
·
Thu Mar 03 23:00:00 EST 2016
· Thin Solid Films
·
OSTI ID:1352745