Prediction and Inference of Multi-scale Electrical Properties of Geomaterials
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Motivated by the need for improved forward modeling and inversion capabilities of geophysical response in geologic settings whose fine--scale features demand accountability, this project describes two novel approaches which advance the current state of the art. First is a hierarchical material properties representation for finite element analysis whereby material properties can be prescribed on volumetric elements, in addition to their facets and edges. Hence, thin or fine--scaled features can be economically represented by small numbers of connected edges or facets, rather than 10's of millions of very small volumetric elements. Examples of this approach are drawn from oilfield and near--surface geophysics where, for example, electrostatic response of metallic infastructure or fracture swarms is easily calculable on a laptop computer with an estimated reduction in resource allocation by 4 orders of magnitude over traditional methods. Second is a first-ever solution method for the space--fractional Helmholtz equation in geophysical electromagnetics, accompanied by newly--found magnetotelluric evidence supporting a fractional calculus representation of multi-scale geomaterials. Whereas these two achievements are significant in themselves, a clear understanding the intermediate length scale where these two endmember viewpoints must converge remains unresolved and is a natural direction for future research. Additionally, an explicit mapping from a known multi-scale geomaterial model to its equivalent fractional calculus representation proved beyond the scope of the present research and, similarly, remains fertile ground for future exploration.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1562367
- Report Number(s):
- SAND--2019-10713; 679282
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fractional Operators Applied to Geophysical Electromagnetics
A generalized anisotropic deformation formulation for geomaterials
A Fast Solver for the Fractional Helmholtz Equation
Journal Article
·
Thu Nov 14 19:00:00 EST 2019
· Geophysical Journal International
·
OSTI ID:1575279
A generalized anisotropic deformation formulation for geomaterials
Journal Article
·
Fri Oct 16 20:00:00 EDT 2015
· Computational Particle Mechanics
·
OSTI ID:1492579
A Fast Solver for the Fractional Helmholtz Equation
Technical Report
·
Thu Oct 03 00:00:00 EDT 2019
·
OSTI ID:1569144