
•

SANDIA REPORT
SAND2019-10713
Printed September, 2019

Sandia
National
Laboratories

Prediction and Inference of Multi-scale
Electrical Properties of Geomaterials
Chester J. Weiss, Güngör Didem B4carde, and Bart G. van Bloemen
Waanders

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

2



ABSTRACT
Motivated by the need for improved forward modeling and inversion capabilities of geophysical
response in geologic settings whose fine—scale features demand accountability, this project
describes two novel approaches which advance the current state of the art. First is a hierarchical
material properties representation for finite element analysis whereby material properties can be
perscribed on volumetric elements, in addition to their facets and edges. Hence, thin or
fine—scaled features can be economically represented by small numbers of connected edges or
facets, rather than 10's of millions of very small volumetric elements. Examples of this approach
are drawn from oilfield and near—surface geophysics where, for example, electrostatic response of
metallic infastructure or fracture swarms is easily calculable on a laptop computer with an
estimated reduction in resource allocation by 4 orders of magnitude over traditional methods.
Second is a first-ever solution method for the space—fractional Helmholtz equation in geophysical
electromagnetics, accompanied by newly—found magnetotelluric evidence supporting a fractional
calculus representation of multi-scale geomaterials. Whereas these two achievements are
significant in themselves, a clear understanding the intermediate length scale where these two
endmember viewpoints must converge remains unresolved and is a natural direction for future
research. Additionally, an explicit mapping from a known multi-scale geomaterial model to its
equivalent fractional calculus representation proved beyond the scope of the present research and,
similarly, remains fertile ground for future exploration.
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Figure 2-1. Hierarchy of volumes (left), facets (middle) and edges (right) on which the
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Figure 2-2. Comparison between finite element (symbols) and analytic (line) solutions for
buried, thin and perfectly conducting cylinder (see inset for geometry). Plotted
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source located a distance L away from the top end of the conductor. Analytic
solutions are given for cylinder radius of 0.001 m, a dimension well within the
asymptotic limit for an infinitesimally thin conductor  36

Figure 2-3. Top (a) and bottom (b) oblique views of the finite element mesh used for the
benchmark exercise in Figure 2-2. Air region is assume to lie above the top
surface in (a) and is excluded from the computational domain by application
of a homogeneous Neumann boundary condition on the air/earth interface. In
(c) a zoomed in view of the refinement zone highlighted by the red square in
(a). In (d), further zooming on the red square in (c) with a cutaway showing
the set of vertical edges representing the infinitesimally thin vertical cylinder
in Figure 2-2.   37

Figure 2-4. Comparison between finite element solutions of total electric potential for a
moderately conductive, horizontal disk buried in a resistive halfspace subject
to a 1 A point source on the air/earth interface (see inset). Shown by the circles
are finite element solutions along the air/earth interface, centered over the disk,
for the case where the disk is finite thickness and described by a conductivity
value prescribed to tetrahedra within the disk volume. Shown by the dots
are solutions where the disk is infinitely thin, with anomalous conductivity
represented by an equivalent vertical conductance assigned to facets on the
disk's top side.   38

Figure 2-5. Comparison of finite element solutions of the scattered electric potential for a
series of (0.01, 0.1, 1.0 and 10 S/m) conductive thin disks embedded in a 0.001
S/m halfspace, subject to a 1 A point source on the air/earth interface directly
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Figure 2-6. Vertical cross section of electric potential through the center of the disk in
Figure 2-5 (left: fact model, right: volume model, top: 0.1 S/m disk, bottom
10 S/m disk).   40
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Figure 2-7. Vertical cross section of electric potential through the center of a resistive disk
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0.001 S/m and thickness 1.0 m. Bottom: Finite thickness disk replaced with a
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disk, on which is imposed a homogeneous Neumann boundary condition, thus
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Figure 2-8. Close up of finite element mesh used for calculation of electric potential in
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Neumann boundary condition — is imposed to represent an infinitely thin and
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Figure 2-9. Casing voltage (left) for multi-lateral well geometry (right) in a 0.001 S/m for-
mation. Assuming a 0.2 m diameter borehole casing with .025 m wall thick-
ness, effect of casing conductivities 7.3 x 105 and 3.6 x 106 S/m are shown
by the black and red curves, respectively. Averaged over the cross sectional
area of the borehole, the fluid conductivity has negligible contribution to the
total conductivity of the total conductivity—area product of the combined fluid—
borehole system. Also shown (open arrows) is the direction of casing current
given by the gradient of the casing potential.   43

Figure 2-10. Example calculation of a multi-lateral casing excitation (cutaway view, units
V) where the well casing is represented by an infinitesimally thin, edge-based
conductivity model (middle term, Eq 2-3). Point 1 A source is located at the
heel of the center well, C. Wells are 1000 m deep and extend 1000 m horizon-
tally with a lateral separation of 200 m. Formation conductivity is 0.001 S/m;
well casing + fluid represented by a line distribution of t = 5 x 104 S.m (.1 m
radius casing, 0.025 m wall thickness, conductivity 3.6 x 106 S/m).   44

Figure 2-11. Total electric potential for the multi—lateral system in Figures 2-9 and 2-10,
with the addition of a fracture system located 200 m downhole from the heel
in well C. Fractures are modeled as a set of 4 infinitesimally thin ellipses, 60
m tall and 100 m wide, with 10 m separation, oriented normal to the well
bore. For each, fracture conductance, s, is 1 S. (left: oblique view, full color
scale; middle: plan view, compressed color scale; right, zoomed oblique view,
compressed color scale).   45

Figure 2-12. Effect of fractures on casing voltage of well bores A—E for the model shown
in Figures 2-10 and 2-11.  46

Figure 2-13. Difference in casing voltage on well bores A—E for the fracture/no-fracture
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Figure 2-14. Modification of multi—lateral configuration (Figure 2-9) where wells B and D
are galvanically coupled to wells A, C and E, rather than in direct electrical
contact through connected segments of well casing.   48
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Effect on casing voltage for the galvanically coupled well system in Figure
2-14, where fractures are introduced 200 from the heel of the center well C
(Figure 11). conductivity of the total conductivity—area product of the com-
bined fluid—borehole system. Also shown (open arrows) is the direction of
casing current given by the gradient of the casing potential  49

Difference in casing voltage due to fractures in the galvanically coupled well
system in Figure 2-14. Note that whereas there is a notable fracture signature
on well C (left), there is no obvious signature on the neighboring wells B and D. 50

Plan view of difference in electric field on the air/earth interface due to the
presence of fractures for three different well systems: single well (top); multi—
lateral (middle); and coupled multi—lateral (bottom). Well geometry is the
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Convergence of the preconditioned conjugate gradient (PCCG) linear solver
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Sketch of a facet (top) and contours (red) of its corresponding nodal basis
functions (bottom) in local enumeration. Length of the edge between nodes
1 and 3 projected in the e2 and e3 directions is annotated in the top figure in
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Sketch of the horizontal well geometry and fractures. Steel borehole casing
of conductivity c = 5 x 106 S/m with outer diameter 0.2 m and 0.02 m wall
thickness is assumed, resulting in a conductivity•area product te — 5 x 104 S •
m. Fractures are equally spaced, vertically oriented ellipses centered on the
borehole whose width (W), height (H) and location are noted on the figure.
Fracture conductance se ranges from 0.01 to 1.0 S for the models evaluated
herein.   58

Vertical slice of finite element mesh through the borehole path (heavy line) and
showing the set of 4 elliptical fractures (red). Node spacing along the borehole
is 10 m and node spacing within the fracture planes is 3 m.   61

Representative convergence of the Jacobi preconditioned conjugate gradient
solver — specifically, for facet conductance se = 0.1 S and solving the system
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True scattered potential computed by direct differencing x — x0 (red, left panel)
and Neumann series expansions of orders 1 through 6 (left panel) for a fracture
set with conductance se = 0.01 S at measured depth 1200 m and excited by a
1 A source at the well head. Root mean square of the residual between the
Nth order series and true solution (right panel) showing rapid convergence and
stability in series accuracy for terms 4 through 6. Here, 'measured depth' is
the the total along—casing distance as measured from the well head  63
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Figure 3-5. True scattered potential computed by direct differencing x —xo (red, left panel),
Neumann series expansions of orders 1 and 2 (left panel), orders 3-5 (middle
panel) and orders 6-8 (right panel), for a fracture set with conductance se = 0.1
S at measured depth 1200 m and excited by a 1 A source at the well head. . . . 64

Figure 3-6. True scattered potential computed by direct differencing x — xo (black circles)
and by reconstruction Lii\I  1 xi + x(N+1) , N = 0, 1, 2, 3 (red) for fractures with
total conductance se = 1.0 S located at measured depth 1200 m and excited
by a 1 A source at the well head. Residuals for Neumann series expansion of
order i — 1 are shown by x(i) and computed directly by Eq (9). Earth model is
a 0.01 S/m halfspace, with a 5 x 104 S.m steel casing extending 1 km down
from the well head and then 1 km horizontally (Weiss, 2017). In all cases, the
relative error between the reconstructed solution and direct differencing is less
than 0.006% along the borehole casing.  69

Figure 3-7. Convergence of maximum eigenvalue estimate as a function of iteration k for
the three cases of conducting fractures considered in Figures 3-4 through 3-
6, with conductances 0.01, 0.1 and 1.0 S, respectively. Shown by the dashed
line is the radius of convergence 1.0 delineating the convergent Neumann se-
ries model (0.01 S) from the divergent others (0.1 and 1.0 S). Values of the
maximum eigenvalue estimate (italics) annotate each of the three sequences at
convergence .   70

Figure 3-8. Following the cutaway view in Figure 3-2, representative isosurfaces (red,
positive; amber, negative) for the eigenmode corresponding to the maximum
eigenvalue for a Neumann series expansion around perturbations in fracture
conductivity alone. Note the strong signature of the steel casing (red) which
is not part of the conductivity perturbation in the fractures, but is nonetheless
strongly coupled to it.   71

Figure 3-9. Effect of fracture discretization on maximum eigenvalue estimate. Keeping the
fracture geometry constant, the maximum eigenvalue estimate is computed for
five different fracture discretizations where the mesh size (node spacing) h
ranges from 2 to 6 m. Empirically, we observe a roughly 1/h dependence for
the maximum eigenvalue estimate  72

Figure 3-10. Verification of the second order error convergence of linear nodal finite ele-
ments for three independent solutions: one by the method of manufactured
solutions (MMS) and two by the method of exact solutions (MES). Root mean
squared error E of the finite element solution increases as the square of the
element size, h. See text for details on mesh design and MMS/MES problem
statements.  73

Figure 3-11. Finite element solution (color scale) and mesh for problem MES2, the electro-
static response due to a single pole on the air earth interface and adjacent to an
infinitesimally thin vertical conducting sheet. Earth conductivity is 0.01 S/m
and sheet conductance is 10 S. Exact solution is that from a 0.1 m sheet of 100
S/m conductivity, which yields the equivalent transverse conductance value 10
S. Heavy lines show block boundaries within the model domain, which them-
selves are discretized with uniform tetrahedra of edge length h  74
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Figure 4-1. Entrance to an underground tunned complex into the side of an 11° slope. Rails
(heavy lines) are energized at the entrance by a 1 A point source.   77

Figure 4-2. Plan view of tunnel complex and steel rails in Figure 4-1.   79

Figure 4-3. Discretized tunnels and rails in Figure 4-1. Rails are represented by finite el-
ement edges with 5 m nodal spacing, separated by 1.4 m and corresponding
to light freight capacity (49.6 kg/m) with steel conductivity 7 x 106 S/m. Lo-
cal mesh refinement near the tunnel entrance (adit) yields a mesh spacing of
approximately 1 m.   80

Figure 4-4. Electric field on the underground rails within the tunnel complex described in
Figures 4-1 and 4-2. Source is a 1 A single pole electrode located at the tunnel
entrance.   81

Figure 4-5. Electric potential (voltage) on the rails in the tunnel complex described in Fig-
ures 4-1 and 4-2. Source is a 1 A single pole electrode located at the tunnel
entrance. Inspection of the potentials shows that there is continuity, as ex-
pected, at the junction points where the rails curve into the complex. Also
evident is a measureable potential difference between rails in addition to the
potential difference along the individual rails themselves. These effects are
due to the finite conductivity of the rails and the current leakage from the rails
into the surrounding geology.   82

Figure 4-6. Partial cutaway view of the finite elemement mesh and electric potential for the
tunnel and rail complex shown in Figures 4-1 and 4-2. Source is a 1 A single
pole electrode located at the tunnel entrance. Mesh consists of 1.8M tetrahe-
dral elements with 310k nodes. Rails were discretized with only 499 edge—
based conductivity elements. Solution time was — 4 min with preconditioned
conjugate gradients to an optimal solution with normalized target residual of
10-12   83

Figure 5-1. Hierarchy of volumes (left), facets (middle) and edges (right) on which the
conductivity model in equation 3 is defined. For facets and edges, the el di-
rection in the local principal axis references frame oriented normal to the facet
and along the edge, respectively.   87

Figure 5-2. Comparison between finite element (symbols) and analytic (line) solutions for
buried, thin, and perfectly conducting cylinder (see inset for geometry). Plot-
ted is the electric scalar potential Vd on the cylinder due to a 1 A point current
source located a distance L away from the top end of the conductor. Analytic
solutions are given for a cylinder radius of 0.001 m; a dimension well within
the asymptotic limit for an infinitesimally thin conductor.   88

Figure 5-3. Aerial photo of a representative patch of the Kern River Formation oilfield
north of Bakersfield, California, where metallic infrastructure in the form of
well casings, surface delivery pipes and storage tanks are present. For simu-
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black dots represent the wells. The four storage tanks are not included.   89
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Figure 5-4. Magnitude (color) and direction (arrows) of electric current density in the sur-
face pipes for the complete system of pipes and steel—cased wellbores (top)
and the simplified system where well casing is ignored (bottom). Careful in-
spection of the scenarios reveals small differences in amplitude and direction,
e.g., the regions at coordinates (400, 300) and (600, 200)   91

Figure 5-5. Magnitude (color) and direction (arrows) of the electric field on the Air/Earth
interface from a 1 A single pole source located at coordinate (800,0).   92

Figure 6-1. Convergence of the Jacobi-preconditioned conjugate gradient linear solver (Weiss,
2001) for discretization of the fracture models consisted of 100 fractures fol-
lowing power-law fracture length distribution, described in Section 4.2.1. The
results show the elapsed times for a target residual norm 1 x 1 0 1 2  98

Figure 6-2. Comparison of analytical (lines) and HiFEM (symbols) solutions for the ver-
tical dike models. The DC apparent resistivity is plotted a) perpendicular and
b) parallel to the dike as a function of distance from the point source. Black
and red lines denote the analytical solutions of 0.1-m-thick and 5-m thick dike
models, respectively.   108

Figure 6-3. Schematic model of homogenized anisotropic medium consisted of regularly-
spaced, vertical fractures. Fractures with a uniform conductance s are located
in a homogeneous medium n with a conductivity of c. Fracture separation is
d. Point current source (black dot) is located in the center of model. rD and
rN denote Dirichlet and Neumann boundary conditions, respectively.   109

Figure 6-4. Electric potential from a 1 A point source on the air/earth interface, plotted
as a function of lateral offset for two different Earth models: a c = 0.01 S/m
halfspace (black); and, when the c halfspace is filled with infinitely thin ver-
tical sheets with conductance s = 0.1 S and spacing d = 5 m (red). Offsets
in the sheet—perpendicular and —parallel directions are annotated by I and
respectively.   110

Figure 6-5. Schematic model of regularly-spaced circular fractures: a) horizontal, b) verti-
cal, c) 45°-dipping fractures. am and af denote medium and fracture conduc-
tivity, respectively. d denotes fracture separation. h shown in model a denotes
the depth of the first horizontal fracture from surface and is set to be 1 m.   110

Figure 6-6. Azimuthal resistivity profiles of a) horizontal, b) vertical and c) 45°-dipping
circular fractures (Figure 6-5). Resistivity is sampled along a 20-m radius
survey path. The resistivity profiles of regular fractures with fracture densities
of 50 m (red), 10 m (blue) and 5 m (green) are shown.   111

Figure 6-7. Fracture networks following power-law fracture length distribution with power-
law exponents of a =1.5 (a), 2.5 (b) and 3.5 (c). The three development stages
of fracture networks (Nfracture =10, 50 and 100) are shown. The 3D backbone
structures (pipes in blue) show connectivity of fracture networks. Fractures
with random orientations are randomly distributed over a 100 x 100 x 100 m
volume. The survey profile with 20-m radius (black circle) and the point cur-
rent source (black dot) location are shown on each fracture model. The fracture
aperture (10-3m) is constant and uniform for each fracture. The conductivities
of fractures and homogeneous half-space are 1 S/m and 10-45/m, respectively. 111
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Figure 6-8. Azimuthal resistivity profiles of fracture models (Figure 6-7) consisted of a)
10, b) 50 and c) 100 fractures, following power-law fracture length distribution
with power-law exponent of a =1.5 (red), 2.5 (blue) and 3.5 (green).   112

Figure 6-9. Fracture networks where fracture apertures are positively correlated to the frac-
ture length, obeying lognormal, normal and uniform distributions. a) A well-
connected fracture network shown in Figure 6-7a, b) a poor-connected fracture
network following a narrow uniform length distribution. Both models consist
of N = 100 fractures. Fractures are colored by their apertures and facet ele-
ments are shown on fractures. For visual clarity, three aperture distributions
have different aperture limits The apertures of the lognormal distribution take
values between 3.60e-5-8.41e-3, the apertures of the normal distribution take
values between 3.37e-5-8.90e-3, and the ones of the uniform distribution take
values between 2.67e-4-9.83e-3.   112

Figure 6-10 Azimuthal resistivity profiles of (a) well- and (b) poor-connected fracture net-
works shown in Figure 6-9 where fracture apertures obey lognormal (red),
normal (blue) and uniform (green) distributions. The profiles are shown in
presence (solid) and absence (dashed) of fracture length-aperture correlation.
The mean value and standard deviation of lognormal and normal distributions,
and the truncation limits of uniform distribution are given in the legend.   113

Figure 6-11. (left) Rendering and benchmark problem setup for an electrically conducting
(s = 1 S) 3D fracture network in "air" (cr = 1 x 10-12 S/m ) where the fractures
only connect 4 of the 6 sides of the modeling domain and are spatially invariant
one direction. For clarity, only the discretized fractures are shown, where the
air region between fractures (not shown) is discretized by unstructured tetra-
hedral elements. See text for further details. Potentials within the fractures
computed by the 3D HiFEM algorithm (color coded) show the expended lin-
ear dependence on the vertical coordinate and agree with the analytic solution
to an R1VIS error of approximately 1 x 10-8 V. (right) Two-dimensional cross
section through the middle of the volume shown on the left showing the magni-
tude of the potential gradient (electric field) within the fractures as calculated
by the 3D HiFEM algorithm. As expected, for cases such as this where the
fractures all have equal transverse conductance s, the electric field magnitude
is uniform throughout each of the fractures and varies between fractures in pro-
portion to the cosine of vertical deviation angle, resulting here in a maximum
electric field magnitude of (+1 V — ( —I V) ) /10 m = 0.2 V/m   114
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Figure 6-12. (left) Rendering and benchmark problem setup for second electrically con-
ducting (s = 1 S) 3D fracture network in "air" (a = 1 x 10-12 S/m ) where
the fractures fully connect all 6 sides of the modeling domain, retaining spa-
tial invariance in one direction as was done in the previous example. Hence
the fracture network can be reduced to a 2D problem. For clarity, only the
discretized fractures are shown, where the air region between fractures (not
shown) is discretized by unstructured tetrahedral elements. See text for further
details. Potentials within the fractures computed by the 3D HiFEM algorithm
(color coded) show a rough linear dependence on the vertical coordinate and
agree with the 2D network solution to an RMS error of approximately 1 x 10-8
V. (right) Two-dimensional cross section through the middle of the volume
shown on the left showing the magnitude of the potential gradient (electric
field) within the fractures as calculated by the 3D HiFEM algorithm. In con-
trast to the previous benchmark, the presence of laterally connected fractures
with "no—flow" boundary conditions results in a complex distribution of elec-
tric field where the magnitude within a given fracture is no longer necessarily
uniform, but instead is uniform only along segments defined by fracture in-
tersections. In some cases, this magnitude (0.24 V/m) can exceed that of the
background vertical electric field 0.2 V/m. As expected, fractures segments
connected to the lateral sides of the model domain are equipotential surfaces
and thus have zero electric field in accordance with the imposed homogeneous
Neumann boundary condition at their endpoints.   115

Figure 7-1. a) Hierarchical components of material property for a tetrahedral finite ele-
ment. Volumetric electrical conductivity a, is defined over the tetrahedral
element whereas the incorporation of the conductivity contrasts on facet and
along edge is achieved via defining them as conductance se (S) and conductivity-
are product te (S.m), respectively. b)Hierarchical representations of a lateral
well and a single fracture in a basin-scale tetrahedra mesh volume. Black line
indicates the lateral well that is represented as a set of connected edges, and
the ellipse (in orange) indicates the fracture plane that is represented in forms
of a set of connected facets in the mesh. The inset map shows a magnified
view of the well and the fracture plane  125

Figure 7-2. A subsurface model with two vertical wells. Equal-length wells are located
500 m apart in a 0.01-S/m homogeneous medium. The black and white circles
denote a dipole source.   126

Figure 7-3. Electrical potential distributions near two vertical wells (Fig. 7-2) resulting
from different source locations (rows) and different combinations of well ma-
terial (steel vs. no steel, columns). Black and white circles denote a 50-m
dipole source with 1 A and —1 A. Black wells have steel casing with a con-
ductivity of 106 S/m and white wells have no steel casing.   127
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Figure 7-4. Profiles of the absolute values of the electrical potentials along Borehole 1 (first
column) and along Borehole 2 (second column) Each row shows the borehole
voltage due to a different source location (as shown in Fig. 7-3). Each color
indicates a different combination of well material (Fig 3a-3d) as indicated in
the legend of (c).  128

Figure 7-5. Borehole potential (in absolute value) and current density along a 2-km vertical
well with a steel casing with a conductivity of 106 S/m due to a) a monopole
source (1 A) located at 1 km depth, and a dipole source with b) 0.1 km, c)
0.5 km and d) 1 km length. For each dipole source, the positive point source
(black circle, 1 A) is fixed to be located at 1 km and the negative point source
(white circle, —1 A) is located at greater depth according to the dipole length. . 129

Figure 7-6. Oblique views of electrical potential distribution for a single lateral well with
5 fractures where the conductivity contrast between the fractures and the host
is a) 1 and b) 103. The lateral well extends 750 m vertically and 1000 m
horizontally (black line). The fractures with a 10 m separation are located
at 480 m-520 m at 750 m depth. c) Profiles of the absolute values of the
voltage differences along the steel-cased well before and after fracturing due
to different conductivity contrasts  130

Figure 7-7. Three representative well models: a) lateral wells, b) multi-lateral wells, c)
multi-vertical wells. Well systems are located in a 0.01-S/m host medium and
extend 1 km horizontally. The separation of horizontal wells in (a) and (b), and
the vertical separation in (c) is 250 m. Each well has steel well-casing with a
conductivity of 106 S/m. Grey ellipses with 10-m spacing indicate fracture
planes with a 1-S conductance. Each filled and open circle pair in the same
color denote a dipole source with 1 A and —1 A. For each well model, two
different source locations are considered; where the dipole source is located at
450 m and 550 m in Borehole A (in black) and in Borehole B (in red)  131

Figure 7-8. Electrical potential distributions for a) parallel lateral wells, b) multi-lateral
wells, c) multi-vertical wells with regularly-spaced fractures (Fig. 7-7) due to
a dipole source (black and white circle pair) that is located in the production
well. First row shows the oblique views and second row displays the corre-
sponding plan views. Black lines indicate the well geometry and fractures (on
plan views only).   132

Figure 7-9. Electrical potential distributions for a) parallel lateral wells, b) multi-lateral
wells, c) multi-vertical wells with regularly-spaced fractures (Fig. 7-7) due to
a dipole source (red and white circle pair) that is located in the monitoring well.
First row shows the oblique views and second row displays the corresponding
plan views. Black lines indicate the well geometry and fractures (on plan views
only).   133

16



Figure 7-10. Profiles of the absolute values of the potential differences along a) parallel lat-
eral wells, b) multi-lateral wells, c) multi-vertical wells before and after frac-
turing shown in Fig. 7-7. Solid lines indicate the production wells (Borehole
A) where the fractures are located and dashed lines indicate the monitoring
wells (Borehole B). The dipole source location is indicated with black (in the
production well) and red (in the monitoring well). Note that from Fig. 7-7c,
the heel of Borehole A is at TVD=500 m and the heel of Borehole B is at
TVD=750 m. For clarity, the values in the red curves of Figure (a) have been
multiplied by a factor of 30.   134

Figure 7-11. Absolute values of the voltage differences (before and after fracturing) along
the multi-lateral wells (Fig. 7-7b) for different fracture sizes. R indicates a
fracture with a 50-m major and 20-m minor radii. Fracture zone is bounded
by red lines. Solid lines indicate the production wells (Borehole A) where the
fractures are located and dashed lines indicate the monitoring wells (Borehole
B).   134

Figure 7-12. Electrical potential distributions of the multi-lateral wells (Fig. 7-7b) when
the size of fractures is 5 R, for two different dipole source locations (a) in the
production well, b) in the monitoring well). First row shows the oblique views
and second row shows the corresponding plan views. Black lines indicate the
well geometry and fractures (on plan views only)  135

Figure 7-13. a) Fracture propagation model. The multi-lateral wells has the same geometry
and physical properties with the model shown in Fig. 7-7b. The fractures
are located along Borehole A, and the first fracture is located at 480 m in
the horizontal direction. The fracture set propagation is considered as four
stages. Each stage has additional 5 fractures with 10 m spacing. The fractures
are circular with radii populated from a uniform distribution (20 m, 50 m).
Black dot denotes a 1-A monopole source. b) The voltage difference profiles
(in absolute value) along borehole A and B for different stages of fracture set
propagation. Black dots indicate the source location. The zone of the fracture
set after each fracturing episode is shown with red bars  136

Figure 8-1. Total number of quadrature points L as a function of Laplacian exponent s
and node spacing h. Sinc quadrature summation is over the range of indices
f = —N— ,... ,N+   148

Figure 8-2. Convergence of MMS solution u = sin(27rx) + 1 for s = 0.25 as a function
of mesh size N with corresponding node spacing (N — 1)-1. In symbols is the
RMS residual; black lines, the curve h2; and in red, the total number of degrees
of freedom in the discretized linear system (8.27). Linear system (8.27) is
solved using BiCG-STAB to a tolerance of 10-16 in RHS-normalized residual. 149

Figure 8-3. Convergence of BiCG-STAB algorithm with Jacobi preconditioning for the
N = 101 MMS solution in Figure 1. In the solid line is the average residual for
equations in blocks 0, ... , L in (8.27) corresponding to fractional Helmholtz
equations on ve; dashed, the residual for equations in block L+ 1 correspond-
ing to solution of the Laplace equation for w; and dotted, the residual for the
final (L + 2) block of equations enforcing compatibility between v and ye. . . . 150
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Figure 8-4. Convergence of RIVIS error as a function of quadrature spacing m for the MMS
problem with N = 101, h = 0.01 finite element nodes (see Figure 2). Optimal
quadrature interval m* is given by (8.11) yields RIVIS = 1.25 x 10-4, a value
close to the asymptotic limit when m < m* . Note the rapidly increasing RIVIS
error as m* < m   151

Figure 8-5. Overview of magnetotelluric experiment and data reduction. (left) Collocated
time series of horizontal electric field, measured by pairs of grounded elec-
trodes, and magnetic field, measured by induction coils or fluxgates, measure
Earth's inductive response to ionspheric source currents. (right) Time series
are windowed, filtered and transformed into the frequency domain, from which
the impedance tensor is estimated, containing information on the distribution
of electricical conductivity variations in Earth's subsurface (Chave and Jones,
2012). Because high—frequency fields decay more rapidly with depth than low
frequency fields, frequency can loosely be interpreted as a proxy for depth, and
hence an impedance spectrum is a coarse measure of the local, depth variations
in electrical conductivity  152

Figure 8-6. For a range of fractional exponent values s = 0.6, 0.7, 0.8, 0.9, 0.995, decay of
unit—amplitude real (top) imaginary (bottom) components of horizontal elec-
tric field Ex = u as a function of depth z into a uniform (roc% = 0.01 S/m
medium at frequency f = 1 kHz, corresponding to dimensionless wavenumber

8.89. In red is the analytic solution for the corresponding classical s = 1
Helmholtz. See text for additional details on boundary conditions and scaling
to the physical domain from the dimensionless unit interval.   154

Figure 8-7. Magnetotelluric sounding curves for a uniform iga c Earth model over the
depth domain z E [0, z*] for a range of fractional exponent values s = 0.5, , 1.0
with a perfect conductor boundary condition at z = z*. Apparent resistivity
(top); complex phase (bottom). See text for description. In red are the classi-
cal s = 1 Helmholtz solutions, computed analytically.   155

Figure 8-8. Real (top) and imaginary (bottom) components of horizontal electric field as
a function of depth in a uniform 0.01 S/m Earth underlain by a perfect con-
ductor for frequencies f = 316, 1000 and 3162 Hz, corresponding to the high—
frequency region of the magnetotelluric apparent resistivity spectrum (Figure
6) with approximate s dependent power law behavior. Curves for classical
s = 1 (heavy lines) and fractional s = 0.7 response (light lines) are shown. The
decrease in apparent resistivity is evidently due to the strongly increased verti-
cal gradient of Real component of electric field at the air/Earth interface z = 0
for fractional Helmholtz. Recall that from Eq (4.1) that the vertical gradient
of electric fields resides in the denominator of the of the apparent resistivity
estimator.   157
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Figure 8-9. Apparent resistivity and phase angle data from USArray MT station for KSP34
located NW of Kansas City, KS, USA from the US Array: a) Apparent resi-
sistivity spectrum based on Zxy (blue) and Zyx (red) elements of the 2 x 2
impedance tensor Z. The similarity in the curves, especially at high frequen-
cies, is indicative a locally 1D conductivity profile beneath the observation
point. b) Location map for USArray MT station KSP34. c) Complex phase
angle of the ratios EX/Hy (Zxy, blue) and Ey/Hx. (Zyx, red), again generally sim-
ilar and indicating a locally 1D conductivity profile beneath the station. d)
Depth profile of electrical resistivity beneath station KSP34 estimated by 3D
inversion of all sites in sub-panel (b) (figure 3, sub-panel (a), Yang et al., EPSL
2015 ).   158

Figure 8-10. Apparent resistivity spectra for classical Helmholtz equation s = 1 with i K2 =
(it/3)14/106, where the 0 terms arise in the 1D magnetotelluric case from
Ohm's law with a fractional, non—local time dependence attributable to sub-
diffusion of electric charge following a continuous time random walk with a
heavy—tailed distribution of waiting times. Compare to Figure 7 for the space—
fractional case describing super—diffusion, where the heavy—tailed distribution
of step length (a.k.a. Lévy flights) captures long—range interactions between
charges.   160
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1. INTRODUCTION

1.1. PROJECT MOTIVATION

Our purpose in this project was to develop subsurface imaging and predictive modeling under
conditions where the usual assumptions of petrophysics no longer apply. Whereas geophysical
measurements of rock properties are the only viable approach for reconnaissance and monitoring
of the subsurface and its changing state, these properties (mass density, seismic wavespeed,
electrical conductivity, etc) are often a proxy for other properties of greater interest (e.g.
permeability, fracture density and orientation, mineralogy). The challenge in geophysics is thus
twofold: proper accounting of these properties of interest in the petrophysics of predictive
"forwarcr simulations; and, accurate extraction of these properties from gross, bulk-averaged
maps ("inversioC solutions) of the geophysical proxies. In particular, the bulk electrical
properties of rocks — much like their hydrologic properties — are driven strongly by small-scale
features that can both "shunt" and "short" the underlying transport physics. In other words, for
these problems what matters are the details and how the details connect across orders of
magnitude in length scale. Prior to this LDRD, computational modeling capabilities could
capture, to limited extent, an atomistic "brute force' response of such a detailed,
spatially-correlated geologic medium, however little has been published from this perspective on
the relationship between the geologic texture and macroscopic observable response. Alternatively,
field observations are also consistent with a modified form of the Maxwell equations which result
in fractional-order power law diffusion of induced electromagnetic fields. Our hypothesis going
into this project was that these two views of observational data are mutually consistent and we
thus proposed to indentify the limit and conditions where they converge.

The research herein is an advanced development of innovative concepts for modelling
electromagnetic fields in realistic geologic materials. Modeling anomalous diffusion using the
power-law formulation for Maxwell's equations is novel in the electromagnetic geophysics
community and impacts the broader research question of transport processes in multi-scaled
systems — a persistent and enigmatic problem in the geosciences.

1.2. PROJECT APPROACH

There is observational evidence for anomalous electromagnetic diffusion in near-surface
geophysical exploration that is consistent with a detailed, spatially-correlated geologic medium.
To date, the inference of multi-scale geologic correlation is drawn from two independent methods
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of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an
electromagnetic pulse is plotted as function of transmitter/receiver separation (Weiss and Everett,
2007; Kazlauskas, 2010). The "anomalous" diffusion is evident by the fractional-order power law
behavior of these arrival times, with an exponent value between 1 (pure diffusion) and 2 (lossless
wave propagation). The second line of evidence comes from spectral analysis of small-scale
fluctuations in electromagnetic profile data which cannot be explained in terms of instrument,
user or random error (Everett and Weiss, 2002a; Bahr et al., 2002; Weymer et al., 2015). Rather,
the power-law behavior of the spectral content of these signals (i.e. power versus wavenumber)
and their increments reveals them to lie in a class of signals with correlations over multiple length
scales, a class of signals known formally fractional Brownian motion (Mandelbrot and Ness,
1968). Numerical results over simulated geology with correlated electrical texture —
representative of, for example, fractures, sedimentary bedding or metamorphic lineation — are
consistent with the (albeit limited, but growing) observational data, suggesting a possible
mechanism and modeling approach for a more realistic geology (Ge et al., 2012, 2015; Beskardes
et al., 2016). Furthermore, we had shown how similar simulated results can arise from a modeling
approach where geologic texture is economically captured by a modified diffusion equation
containing exotic, but manageable, fractional derivatives (Oldham and Spanier, 1974). These
derivatives arise physically from the generalized, convolutional form for the electromagnetic
constitutive laws (Jackson, 1975) and thus have merit beyond mere mathematical convenience
(Weiss and Everett, 2007; Tarasov, 2005, 2008).

There are two principal components to the proposed research. The first of which is multi-scale
forward modeling of electromagnetic induction in geomaterials. Preliminary work by the PI in
this area (Weiss and Everett, 2007) innovated a fractional calculus representation of diffusive
electromagnetic transport on hierarchical media — that is, charge/fluid transport over pathways
nested within pathways nested within pathways and so on. Such a structure is analogous to thin
sedimentary bedding and fracture morphology, either naturally occurring or induced through
engineered stressors. The nested hierarchy of the material can be captured through fractional
order derivatives in the governing physics rather than an exhaustive (and Quixotic!) discretization
of every minutia of heterogeneity. Preliminary results appeared in the journal Geophysics (Ge
et al., 2012, 2015), but there was still much remaining unanswered. Among them is the length
scale at which the fractional-derivative breaks down and how this relates to the interrogation
frequency of the incident electromagnetic signal. This was coupled with poor undestanding of the
transition and physical response between simple layered/fracturing and their fractional
representation. These are some of the fundamental research questions which motivated the
present work.

In doing so, our aim was to build on a related branch of prior work where computational models
of increasing electrical complexity were analyzed to understand their asymptotic response in the
fractional-calculus limit Work (Beskardes et al., 2016) had been done on simplistic models of
stochastic, spatially correlated conductivity distributions, but the models were relatively crude and
not fully representative of "realistic" geologic materials likely to be found in exploration or
engineering scenarios. Construction and evaluation of realistic models was known a priori to be
computationally burdensome, requiring far greater computational resources than are available in
the academic/commercial sector. Our initial plan was to further exploit previous work by the PI
(Weiss, 2013, 2014) using mixed vector/scalar potentials and solve the Maxwell equations on

22



nested computational grids — not to be confused with "multi-grie, but rather a fine grid
embedded within another — which are then "stitcher together through interpolation (e.g. Berger
and Oliger, 1984; Weiss, 2014). This idea was superceded by an unforeseen breakthrough in Q1
of the first project year where, instead of nested grids, a hierarchical finite element framework
was devised in which fine scale features could be economically represented in a discretized
geomodel. This (truely transformative) breakthrough enabled a series of previously unobtainable
results in oilfield/infrastructure/fracture modeling and eased the initial project objective of
exploring the intermediate length scale from two converging directions: a zooming down of the
macroscopic (fractional derivative) view; and, a heuristic homogenization of the atomistic (brute
force discretization) view.

It's fair to point out that we are not the only ones in the computational electromagnetics
community who strive toward accurate accounting of geologic detail, however existing work in
this area is focused chiefly on accurate bathymetry/topography representation and adaptive mesh
refinement for mitigating numerical error. While we initially believed that the stochastic models
in Beskardes et al. (2016) could best be improved upon in the nested, but structured, grid
environment on which the Weiss (2013) solver was been developed, the hierarchical finite element
framework (Weiss, 2017), instead, turned out to be the primary computational workhorse.

The second major technical thrust to the research was envisioned as development of an
inversion/imaging algorithm suitable for likely scenarios in Sandia's mission space such as
underground facility characterization, situation awareness and energy/resource research. Thus, we
anticipated leveraging the existing Trilinos framework for application-optimized imaging using
traditional gradient-based methods with uncertainty estimates. The inversion/optimization effort
for the proposed research would differ from present "state-of-the-are' in electromagnetic imaging
(e.g. Haber et al., 2007; Um et al., 2014) in that we aimed to recover not only a conductivity
model, but more importantly, the fractional order of the time derivative and/or the correlation
statistics of the geologic conductivity model. Estimating these parameters would propel the
interpretation of electromagnetic data out of a model space defined by crude, blocky conductivity
structures and into one where realistic geologic structure is better represented and quantified. This
effort, however, was de-prioritized in year 2 of the project for two reasons: excitement and
accelerated commercial opportunities from the Weiss (2017) hierarchical breakthrough; and,
techincal challenges implementing the fractional Helmholz solver with the Rapid Optimization
Library.

To our knowledge, there are no other researchers in the US who are pursuing the concept of
fractional diffusion models for electromagnetic prospecting, largely — we suspect — because of the
greatly diminished size of the domestic EM research population. Elsewhere, others have made
tentative progress with these concepts (e.g. Bahr et al., 2002; Skinner and Heinson, 2004), but
they remain mostly fertile ground for research. The analogy between fluid and charge transport in
rocks motivated much of our early thinking and we believe that the success of fractional,
anomalous transport theory in hydrology (e.g. Berkowitz and Scher, 2005) can be paralleled or
even surpassed in the applied geophysics community. At the project onset, we were aware of no
existing IP in this technology space, and the expectation of the project was to generate meaningful
IP in modeling, inversion and analysis as they arise from the pursuit of the project's technical
goals.
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The overarching science goal for the project is to pioneer a "new science of transport physics on
multi-scale, textured geomaterials, with an initial emphasis on electromagnetic current and charge
transport. In particular we seek to better understand the effects of multi-scale geologic texture on
electromagnetic interrogation by pushing the computational limits in modeling correlated,
cell-by-cell variations in electrical conductivity and determining under what conditions of
experimental setup, geology and instrumentation, these results converge with the provocative, but
economical, use of fractional derivatives for bulk-scale modeling of sub-grid geologic texture. In
doing so, we seek to harmonize the atomistic (brute force discretization) view with the
macroscopic (fractional derivative) view of proper accounting for complex geologic texture. This
should have immediate application underground facility characterization, fracture mapping,
global nuclear assurance and security, and mineral/energy/resource science. As documented in
the following subsection, that IP landscape has now changed considerably and as a direct result of
LDRD funding.

1.3. STRUCTURE OF THIS REPORT

As will be demonstrated shortly, this project has generated a significant number of contributions
to the scientific literature with corresponding intellectual property instruments for Sandia
National Laboratories. Chapters 2 through 8 of this report are drawn directly from this published
bibliographic record and modified here for formatting compliant with the requirements of a
SAND report. For brevity, these chapters represent only the major findings of this LDRD: the
hierarchical finite element concept; its application to oilfield, infrastructure and fracture
characterization, wellbore modeling; and, a novel solution to the fractional Helmholtz equation.
These chapters are intentionally self-contained and correspond to their published manuscripts in
the following way:

Chapter 2: Weiss CJ, Finite element analysis for model parameters distributed on a hierarchy
of geometric simplices, Geophysics, 82, E155 (2017).

Chapter 3: Weiss CJ and BG van Bloemen Waanders, On the convergence of Neumann series
for electrostatic fracture response, Geophysics, 84, E47-55, (2019).

Chapter 4: Weiss CJ, Hierarchical material properties in finite element modeling: An example
in 3D DC resistivity modeling of infrastructure, 3DEM-6, 6th International Symposium on
Three-Dimensional Electromagnetics, Berkeley CA, 4pp, (2017).

Chapter 5: Weiss CJ and G Wilson, A new hierarchical finite element method for compact
representation of oilfield infrastructure, SEG Annual Meeting, Expanded Abstracts, 5pp, (2017).

Chapter 6: Beskardes GD and CJ Weiss, Modeling DC responses of 3D complex fracture
networks, Geophysical Journal International, 214, 1901-12 (2018).
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Chapter 7: Beskardes GD and CJ Weiss, Electrical signatures of fractures near energized
geometrically-complex, steel-cased wells, Geophysics, (in revision, 2019).

Chapter 8: Weiss CJ, BG van Bloemen Waanders and H Antil, Fractional operators applied to
geophysical electromagnetics, Geophysical Journal International, (in revision, 2019).

1.4. INTELLECTUAL PROPERTY SUPPORTED BY THE
ACCOMPLISHMENTS OF THIS LDRD

1.4.1. Software Copyright Assertions

[1] SCR #2238, HFEM3D, v1.0

FORTRAN90 software for computing the solution to the Poisson equation in three
dimensions using the hierarchical material properties framework for finite elements described
in Weiss (Geophysics, 2017). Licence agreement to CARBO Ceramics executed in 2018

[2] SCR #2322, FLUXNET, v1.0

Finite element solution to the Poisson equation over segments of a 2D network of nodes
connected by straight line segments (a.k.a. "graph").

[3] SCR #TBD, FRACHELM, v1.0

Solution of the fractional Helmholtz equation using linear finite elements and the spectral
representation of the fractional Laplacian operator described in Weiss et al. (GJI, 2019).

[4] SCR # TBD, HFEM3D-PARFRAC, v1.0

A toolkit of FORTRAN90 and PYTHON routines to automate calculation of electrostatic
response of fracture networks in geomaterials, specifically designed for distributed memory
compute clusters. Software integrates pre-processing of Cubit—generated meshes with
calculations from HFEM3D and post—processing for aggregate data analysis.

1.4.2. Technical Advances

[5] SD # 14129, Borehole logging with transient electromagnetics

Investigation of the physics of electromagnetic pulse propagation in the Earth from an
uncased borehole antenna. Analysis restricted to a three-layer earth model — one central
layer of electrical conductivity al, bounded by semi-infinite halfspaces, each of conductivity
a2. Borehole antenna envisioned as an axisymmetric loop energized with an instantaneous
step-on current.
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[6] SD # 14680, Hierarchical Representations for Computer Analysis of Metamaterials

TA extends the concept of hierarchical material properties representation described in non-
provisionsal patent application SD14294 for geoscience applications to applications at the
micron scale relevant to the design and analysis of metamaterials for photonics and
photovoltaic s.

[7] SD # 14294, Hierarchical Material Properties in Finite Element Modeling

A mathematical structure is proposed and tested for material properties associated with
volumes, facets and edges of a tetrahedral finite element mesh. This structure allows for
efficient representation of infinitely thin surfaces and lineaments without excessive
discretization by may small volumetric elements. Simulation results from the proposed
structure have been benchmarked against independent reference solutions for the problem of
strongly conducting sheets and cylinders embedded in an electrically conducting medium in
the zero frequency limit. Favorable agreement has been found. Reduction in computation
resources and run times from traditional volume-discretization is shown to be on the order of
a 2-3 orders of magnitude.

1.4.3. Patent Applications

[8] US15/871,282 (pending, filed Jan 15, 2018)

Title: Methods and devices for preventing computationally explosive calculations in a
computer for model parameters distributed on a hierarchy of geometric simplices

Inventor: Chester J Weiss

Abstract: A computer-implemented method of preventing computationally explosive
calculations. The method includes obtaining, by a processor of the computer, measured data
of one of a physical process or a physical object; performing hierarchical numerical modeling
of a physical process inclusive of an Earth model containing at least one of (a) infrastructure
in the ground and (b) a formation feature in the ground, wherein predicted data is generated;
comparing the measured data to the predicted data to calculate an estimated error; analyzing
the estimated error via an inversion process to update the at least one of the Earth model and
infrastructure model so as to reduce the estimated error and to determine a final composite
Earth model of at least one of the infrastructure and the feature; and using the final composite
Earth model to characterize at least one of the process and the physical object.
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1.5. PUBLISHED WORK SUPPORTED BY THE
ACCOMPLISHMENTS OF THIS LDRD

1 .5.1. Peer—Reviewed Publications

[1] Swidinsky A and CJ Weiss, On coincident loop transient electromagnetic induction logging,
Geophysics, 82, E211 (2017).

[2] Weiss CJ, Finite element analysis for model parameters distributed on a hierarchy of
geometric simplices, Geophysics, 82, E155 (2017).

[3] Wilt M, E Um C Weiss, D Vasco, P Petrov, G Newman and Y Wu, Wellbore Integrity
assessment with casing—based advanced sensing, Proceedings of 43 Workshop on Geothermal
Reservoir Engineering 1-7 (2018).

[4] Beskardes GD and CJ Weiss, Modeling DC responses of 3D complex fracture networks,
Geophysical Journal International, 214, 1901-12 (2018).

[5] Weiss CJ and BG van Bloemen Waanders, On the convergence of Neumann series for
electrostatic fracture response, Geophysics, 84, E47-55, (2019).

[6] Downs C, CJ Weiss and S Kruse, Forward models to guide interpretations of EMI data in
highly conductive environments, Geophysics (in revision, 2019).

[7] Um, E, Wilt M, CJ Weiss, G Nieuwenhuis and K MacLennan, Casing integrity mapping using
top-casing electrodes and surface based electromagnetic fields, Geophysics (accepted, 2019).

[8] Beskardes GD, WA McAliley, M Ahmadian, DT Chapman, CJ Weiss and JE Heath, Power
density distribution in subsurface fractures due to an energized steel well-casing source,
Journal of Environmental and Engineering Geophysics, 24, 285-297 (2019).

[9] Weiss CJ, BG van Bloemen Waanders and H Antil, Fractional operators applied to
geophysical electromagnetics, Geophysical Journal International, (in revision, 2019).

[10] Beskardes GD and CJ Weiss, Electrical signatures of fractures near energized
geometrically-complex, steel-cased wells, Geophysics, (in revision, 2019).

[11] Antil H, M D'Elia, C Glusa, B van Bloemen Waanders and C J Weiss, A fast solver for the
fractional Helmholtz equation, SIAM Journal of Scientific Computing, (to be submitted,
September, 2019).

[12] Beskardes GD, E Um, M Wilt and CJ Weiss, The effects of well casing corrosion and
completion design on geo—electrical response in mature wellbore environments, Geophysics,
(to be submitted, September 2019).
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1.5.2. Peer—Reviewed Extended Abstracts with Conference
Presentation

[13] Weiss CJ, Hierarchical material properties in finite element modeling: An example in 3D DC
resistivity modeling of infrastructure, 3DEM-6, 6th International Symposium on
Three-Dimensional Electromagnetics, Berkeley CA, 4pp, (2017).

[14] Weiss CJ and G Wilson, A new hierarchical finite element method for compact
representation of oilfield infrastructure, SEG Annual Meeting, Expanded Abstracts, 5pp,
(2017).

[15] Weiss CJ, E Um and M Wilt, Effects of completion design on electrically stimulated casing
and its 3D response, SEG Annual Meeting, Expanded Abstracts, 5pp, (2018).

[16] Beskardes GD and CJ Weiss, 3D DC resistivity modeling of complex fracture networks,
SEG Annual Meeting, Expanded Abstracts, 5pp, (2018).

[17] Weiss CJ, GD Beskardes and BG van Bloemen Waanders, Hierarchical material property
representation in finite element analysis: Convergence behavior and the electrostatic response
of vertical fracture sets, SEG Annual Meeting, Expanded Abstracts, 5pp, (2018).

[18] Wilt M, E Um, K MacLennan, CJ Weiss, and GD Beskardes, Case histories applying
top-casing electrodes and surface based EM fields for well integrity mapping, SEG Annual
Meeting, Expanded Abstracts (2019).

1.5.3. Short Abstracts and Conference Presentations

[19] Weiss CJ, Electromagnetic modeling of geology cluttered with infrastructure and other thin
conductors: a finite element method for hierarchical model parameters on volumes, faces and
edges of an unstructured grid, SIAM Conference on Math. and Comp. Issues in the
Geosciences, Erlangen Germany, 2017. (INVITED).

[20] Van Bloemen Waanders BG, H Antil, D Ridzal and CJ Weiss, Fractional differential
operators to detect multi-scale geophysical features, SIAM Conference on Math. and Comp.
Issues in the Geosciences, Erlangen Germany, 2017.

[21] Weiss CJ, Electromagnetic modeling of geology cluttered with infrastructure and other thin
conductors: a finite element method for hierarchical model parameters on volumes, faces and
edges of an unstructured grid, Society of Professinal Well Log Analysts Resistivity Sig Fall
2017 Meeting, Houston TX, 2017. (INVITED)

[22] Weiss CJ and GA Wilson, Hierarchical material properties in finite element analysis: The
oilfield infrastructure problem, AGU Fall Meeting, Near Surface Session, New Orleans LA,
2017.
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[23] Wu Y, M Wilt, E Um, D Vasco, P Petrov, G Newman, CJ Weiss, P Cook and T Wood, WISE
CASING: Wellbore Intetrity asSEssment with Casing—based Advanced SenSING,Stanford
Geothermal Workshop 2018 Annual Meeting, Stanford CA, 2018.
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2. A HIERARCHICAL FINITE ELEMENT
FRAMEWORK

2.1. SUMMARY

A resurgence of interest in the problem of electrical or electromagnetic scattering from thin
conductors, either on a line or in a plane, has been motivated in recent years by time—lapse
fracture monitoring in the near surface, enhanced geothermal reservoirs and unconventional
hydrocarbon plays. However, finite element modeling of small electrical features in large
computational domains results in a disproportionately large number of elements concentrated in
volumetrically insignificant fraction of the mesh, and focuses computational resources away from
areas of interest elsewhere, such as receiver locations. In the work described here, a novel
hierarchical electrical model is proposed for unstructured tetrahedral finite element meshes,
where the usual volume—based conductivity on tetrahedra is augmented by facet— and edge—based
conductivity on the infintesimally thin regions between elements. Doing so allows a slender
borehole casing of arbitrary shape to be coarsely approximated by set of connected edges on
which a conductivity—area product is explicitly defined. Similarly, conductive fractures are
approximated by a small number of connected facets that, together, may warp and bend with the
mesh topology at no added cost of localized mesh refinement. Benchmarking tests of the direct
current (DC) resistivity problem show excellent agreement between the facet/edge representations
and independent analytic solutions. Consistency tests are also favorable between facet/edge and
volume representations. Building on prior work in DC modeling of a single horizontal well, a
multilateral well casing and fracture set is simulated, yielding estimates of borehole casing
voltage and surface electric fields measurable with existing sensor technology. Lastly, the
implications on broadband electromagnetic simulation with the proposed hierarchical
conductivity model are discussed — in particular, its utility for describing variations in both
magnetic permeability and electrical conductivity.

2.2. INTRODUCTION

A common requirement in numerical modelling of geophysical experiments, especially in
electrical and electromagnetic methods, is the need to effectively capture a broad range of length
scales in a single simulation, from the field scale over which sensors are deployed and regional
geologic trends are dominant, to the fine scale where anthropogenic clutter and geologic details
such as fractures have the potential to broadcast a disproportionate response. For example, it's
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well known that metallic clutter such as rails, pipes and borehole casings, while volumetrically
insignificant over the field scale, can generate significant and fully coupled, secondary electric
and magnetic fields whose magnitude is comparable, if not larger, to the signal of interest from a
geologic target (Fitterman, 1989; Fitterman et al., 1990). The challenge, from a computational
perspective, is how best to accurately and economically simulate the response of both the large
and the small in a given model. Variable mesh resolution in a computational model is nothing
new, and there is a mature literature devoted to mesh refinement schemes in finite element,
difference and volume methods. Consider, however, discretization of steel borehole casing in a
computation over a modest field scale — say, a 1 x 1 km patch of ground and extending 1 km deep
into the earth. At 0.1 m outer radius for the steel casing and 0.025 m wall thickness, a regular
tetrahedron with edge length 0.025 m occupies a volume (0.025 m)3/(6 \/2) = 1.84 x 10-6 m3
and therefore 500 m of casing would require
(500m) ((0.1m)2 — (0.075 m)2) 7c/(1.84 x 10-6m3) = 3.7 x 106 tetrahedra at the coarsest

discretization. Over a 1 km3 simulation volume finely discretized at, say 10 m, roughly
3.7/(3.7 + 8.5) x 100% = 30% of the tetrahedra in the mesh will be devoted to 6.9 x 10-7% of
the mesh volume. For longer casings, typical of a production well, these ratios become even more
extreme, especially considering larger physical domains for the computation and coarse meshing
away from areas of interest. Furthermore, although (with proper mesh design and problem
formulation) the electromagnetic problem can be solved for over domains of this topological size
and larger, the computational resources required to do so become significant, typically resulting in
specialized algorithms designed for parallel compute architectures (Commer et al., 2015; Um
et al., 2015; Haber et al., 2016).

Hence, there's been considerable effort spent on alternative solutions to the problem of computing
electric and electromagnetic fields scattered from thin boreholes subject to excitation by external
sources. Nearly all are for simplified geometries of straight conductors in a layered or uniform
medium and rely on either analytic or integral equation methods (e.g. Wait, 1952; Hohmann,
1971; Parry and Ward, 1971; Howard, 1972; Wait, 1957; Wait and Williams, 1985; Williams and
Wait, 1985; Johnson et al., 1987; Schenkel and Morrison, 1990; Patzer et al., 2017). Qian and
Boerner (1995) is a notable exception in that it considers the response of a sinuous conductor in a
layered medium through integral equation methods. Extension of any of the work just cited, in an
analytic sense, to generalized three—dimensional (3D) geometries has not been forthcoming.

In addition to the brute force discretization approach, where the high cost of borehole meshing is
paid in full through fine scale discretization and parallelization (Commer et al., 2015; Hoversten
et al., 2015; Um et al., 2015), or reduced by considering a slightly larger casing (hence, fewer
elements) at the cost of sacrificing true geometric conformity between the borehole/earth interface
(Haber et al., 2016; Weiss et al., 2016), the equivalent resistor network approach has also received
some attention (Yang et al., 2016). Based on cross borehole tomography, where the borehole
casing is exploited as an electrode (Newmark et al., 1999; Daily et al., 2004), Yang et al. (2016)
construct a Cartesian grid of conductive blocks and assign electrical conductivity values to the
blocks, along with the faces and edges between the blocks. Thin conductors are economically
represented by face and edge elements of the mesh and electric scalar potential at the mesh nodes
is computed by solving the linear system of equations resulting from volume averaging of the two
Kirchhoff circuit laws. Yang et al. (2016) recognize the similarity between the coefficient matrix
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of this linear system of equations and the more general V • aV operator describing direct current
(DC) excitation of a conducting medium a, and rightfully point out that "regulae DC resistivity
modeling (presumably finite element, volume or difference) is done only with volume—based
conductivity cells and therefore does not accommodate edge— and face—based conductivity
elements.

In the work described here, the concept of a hierarchical electrical structure — one in which
electrical properties of conducting media are associated with volumes, facets and edges — is
developed for the 3D DC resistivity problem, and in particular, for finite element analysis on
unstructured tetrahedral grids. In doing so, the connection is drawn between the (Yang et al.,
2016) circuit model and continuum modelling of fully heterogeneous conductivity distributions
where edges and facets are free to be arbitrarily oriented and not constrained to a Cartesian grid.
To summarize the algorithmic consequences of the proposed hierarchical model, we find that the
global stiffness matrix arising from the governing Poisson equation is modified to also include
element stiffness matrices for two—dimensional facets and one—dimensional edges, thus explicitly
keeping the face and edge conductivities "locar to their corresponding nodes rather than
distributed over an entire 3D element. The remainder of the paper is organized as follows: a
discussion of the theory behind the hierarchical model; benchmarking and consistency tests to
exercise the edge, facet and volume representations; and, a simulated "fielr example where the
DC response is computed for a idealized multilateral well system in the presence of conducting
fractures.

2.3. THEORY

For simplicity, consider the Poisson equation governing the distribution electric scalar potential u
throughout a 3D anisotropic medium a, subject to a steady electric current density Js:

—V • (a • Vu) = f (2.1)

where f is given by V • J, and a = diag(aii, 622, a33) is a piecewise—constant, rank-2 tensor in
some local principal axes reference frame defined by orthogonal unit vectors el, e2 and e3. That
is, the local principal axes reference frame is free to vary spatially throughout the medium. In
formulating the variational problem based on Eq (2.1), we introduce a "test" function v and
integrate over the model domain n, on whose bounding surface we impose either a homogeneous
Dirichlet or Neumann boundary condition. Integration by parts, followed by application of
Gauss's Theorem and the homogeneous boundary conditions just described results in

ft2Vv • (a • Vu) dx3 = f vf dx3. (2.2)
n

Pause, for a moment, to consider how the integrand on the left hand side of Eq (2.2) is affected by
variability in the principal conductivities all, 4522 and a33. In the case where a = diag(a, a, a)
the medium is by definition isotropic and, hence, it is simple to show that
Vv • (a • Vu) = aVv • Vu. If instead, a = diag(0, a, a), one finds that Vv • (a • Vu) = 6V23v • V23u
where V23 is the two-dimensional gradient operator in the e2-e3 plane of the principal axes
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reference frame. Taking this one step further, the case where a = diag(a, 0, 0) yields
Vv • (a • Vu) = aV1v • V1 u with V1 being the spatial derivative in the el direction.

At this point we've done nothing more that understand how the integrand on the left side of Eq
(2.2) collapses to a simpler form under particular symmetries in a. This is a necessary, but
insufficient condition for the problem of defining electrical conductivity over a hierarchy of
geometric simplices such as volumes, facets and edges of a finite element mesh. To complete the
development, let's articulate further the details of the electrical conductivity function a and define
it by the composite function:

NV NE

a(x) = E covey 4) + 1, seVife:(x) L teve' (x),
e=1 e= 1 e=

with hierarchical, rank-2 basis functions

and

thag (1, 1, 1) 
1 if x E volume eirev ix\ =
0 otherwise

ve:(x) = diag (0, 1, 1)e 01-

1K = diag(1,0,0)e 01

if x E facet e

otherwise

ifx e edge e

otherwise •

(2.3)

(2.4)

(2.5)

(2.6)

For clarity, the number of volumes, facets and edges are denoted by Nv, NF, and NE, respectively.
In Eq (2.5,2.6), the diagonal rank-2 tensor is subscripted by e to indicate representation in the
local ei-e2-e3 frame (Figure 2-1). For facets, we take the e2 and e3 directions to lie in the plane of
the eth facet, where for edges, we take the el direction to lie parallel to the eth edge. Note that
volume integration of Eq (2.3) with the definitions laid out in Eq (2.4 through 2.6) takes on the SI
units [S•m2]. Hence, the SI units of coefficients se and te must be [S] and [S.m], respectively. That
is, se represents the conductivity—thickness product of facet e, and te represents the product of
conductivity and cross-sectional area for edge e.

Continuing from the integral form in Eq (2.3), completion of the variational problem statement —
from which derives the finite element system of equations — proceeds along the usual way of
defining the vector spaces on which v and u reside. This has been covered many times before in
the literature (e.g. Rucker et al., 2006; Wang et al., 2013; Weiss et al., 2016) and omitted in the
present discussion assuming familiarity by the reader. Defining the set of piecewise continuous,
linear basis functions {cpi(x) }liv  1 over N nodes of the tetrahedral mesh defining our computational
domain SI,

1 x= xi

tPi (x) = 0

pcws linear

x

otherwise

(2.7)
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volume

ae diag(1, 1, 1)

facet edge

se diag(13, 1, 1), te diag(1, 0, 0),

Figure 2-1. Hierarchy of volumes (left), facets (middle) and
edges (right) on which the conductivity model Eq (2-3) is de-
fined. Note that for facets and edges, the el direction in the local
principal axis references frame oriented normal to the facet and
along the edge, respectively.

we can write the finite element solution u and test functions v = V-1 vi (x).
Substituting these series expansions into the Eq (2.2) and evaluating the volume integrals results
in a N x N system of linear equations

Ku = b, (2.8)

where elements of K are integrals of VOi • a • V0j, the vector u contains the coefficients ul, u2, • •
and b is the vector of inner products (Oh f). Observe that the linear system is independent of the
coefficients vl , v2, ..., and hence, its solution u is independent of v, as required.

The novelty of the preceding finite element formulation Eq (2.8) lies in the structure of K as a
consequence of the conductivity model in Eq (2.3), as will soon be made apparent. Focusing on
the first of the three summations in Eq (2.3), taken over the Nv tetrahedra within the domain n,
we may write

Nv Nv

Vv • L 'gel/fe (x) Vu dx3 = E cye f Vv • Vu dx3 , (2.9)
e=1 e=1 Ve

where Ve is the volume described by the eth tetrahedron in the model domain K2. Substitution of
the basis functions Eq (2.7) into Eq (2.9) leads to the well—known, three—dimensional "element
stiffness matrices" K4e, given in local node enumeration (Figure 2-1, left) as

Nv

E f VI/ • Vic dx3 , =
e=1 V,

Nv
E(ye veTK4eue,

e=1

(2.10)

with K4e = fve VOi • 001 dx3 }4. 
J
.
=1 

and coefficients = (v1, • • • ,v4)err, = (t11, • • • , /4)T.
Observe, now, the consequences of defining the "transverse conductance se as done in the second
summation in Eq (2.3) over the NF facets of the unstructured tetrahedral mesh:

NF NF

V. seVe(x) Vu dx3 = E se f V23v • V23u dx2 ,
e=1 e=1 Fe

(2.11)

where Fe is the area of the eth facet and 023 is the two—dimensional gradient in the plane of the
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facet. As a result, the right hand side of Eq (2.11) reduces to the two—dimensional element
stiffness matrices Ke3 coupling only those three basis functions on one facet of a given
tetrahedron:

NF NF

Ese f V231, • V23/4 dx2, = se VI; Ke3ue•
e=1 Fe e=1

In keeping with the local enumeration (Figure 2-1) of Eq (2.10),

Ke3 ={ fFe V23 Oi • V2301 Ch2}3i  j=i, Ve (V1I -V211,3) el. and Ile = (L0,742,743)1; . Evaluation third term

in Eq (2.3), containing conductivity—area products te defined on mesh edges (Figure 2-1) proceeds
in a similar way, revealing the underlying presence of the 1D element stiffness matrices

Ke2 ={ fEe Vi Oi • V10 • dx}2j=1 . Thus, we find that the composite global matrix K in the finitei 
element system of equations is constructed by a sum of one—, two— and three—dimensional
element stiffness matrices

NV NE

K e4 e3 GeK + seK + teKe2 (2.1 3)
e=1 e=1 e=1

capturing the electrical properties localized in a hierarchy over volumes, facets and edges of the
finite element mesh.

(2.12)

Observe that the construction in Eq (2.13) arises from two key steps. First, through use of the
rank-2 tensors S e diag(0, 1, 1)e and te diag(1, 0, 0)e, we restrict the coupling between neighboring
nodes be consistent with facets and edges, respectively. Second, by defining the material property
basis functions irFe and tee in Eq (2.5 and 2.6) as non—zero only on facets and edges, the effect on
u of se and te variations in the model is weighted by facet area and edge length, respectively, rather
than tetrahedral volume. Hence, there is consistency between two meshes which share a common
localized s or t distribution, but differ in how these facets and edges are connected to the rest of
the mesh. It's also relevant to point out that although Eq (2.13) is built using the simple case of
linear nodal elements, the same construction applies to nodal elements of higher polynomial
order. Details on constructing Ke3 and Ke2 for linear nodal elements are found in Appendix A.

It's interesting to note that although we've only considered the scalar DC resistivity problem, an
analogous construction is relevant to 3D finite element solutions of the frequency—domain
electromagnetic induction problem where terms such as v • (a • u) appear in "mass" term of the
governing second—order equation (e.g. Everett et al., 2001; Mukherjee and Everett, 2011;
Schwarzbach et al., 2011; Um et al., 2015). In these cases it's clear that instead of a summation of
element stiffness matrices Eq (2.13), the global system of equations would be constructed by a
sum of element mass matrices.

2.4. BENCHMARKING AND CONSISTENCY CHECKING

To test the validity of the conductivity model Eq (2.3) and its manifestation in the finite element
stiffness matrix Eq (2.13), finite element solutions are compared against the independent analytic
solutions for simplified geometries. Here, the effects of facet— and edge—based conductivity are
computed by modification — specifically, inclusion of the second and third summations in Eq
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(2.13) — of the finite element software previously benchmarked in Weiss et al. (2016) for
classical tet/volume based conductivity. In Weiss et al. (2016), the finite element solution was
computed for a thin, conducting cylinder oriented vertically in a uniform halfspace and excited by
point current source on the boundary of the halfspace, some distance laterally from top of the
cylinder which is coincident with the halfspace boundary (Figure 2-2, inset). This problem
geometry admits an analytic solution (Johnson et al., 1987) for perfectly conducting cylinders,
which was favorably compared against multiple finite element solutions for a 105 S/m cylinder in
a 0.001 S/m halfspace.
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lines - analytic (Johnson et al. 1987)

symbols - finite element edge model

0 100 200 300 400
offset, L [in]

500

Figure 2-2. Comparison between finite element (symbols) and
analytic (line) solutions for buried, thin and perfectly conducting
cylinder (see inset for geometry). Plotted is the electric scalar
potential Vd on the cylinder due to a 1 A point current source
located a distance L away from the top end of the conductor.
Analytic solutions are given for cylinder radius of 0.001 m, a di-
mension well within the asymptotic limit for an infinitesimally
thin conductor.

For the first benchmark test here, the (Johnson et al., 1987) buried cylinder solution is compared
against a finite element solution using only edge based conductivities — the last term in Eq (2.3) —
for a range of cylinder/source offsets. Analytic solutions were computed in the asymptotic limit
of an infinitely thin, perfect conductor with radius 0.001 m, a value taken practically to be several
orders of magnitude smaller than the geophysical field scale. Finite element solutions were
computed assuming a value t = 104 S.m for those edges coincident with the central axis of the
cylinder. Elsewhere, t was set to zero, and hence the summation in the last term of Eq (2.13) is
limited to only those edges representing the cylinder. Assuming a 0.001 m radius, this value of t
is equivalent to conductivity value — 3.3 x 109 S/m, a value well in excess of that for metals and
even graphene. Volume conductivity was set to 0.001 S/m for all tetrahedra in the domain,
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including those sharing an edge with a non—zero t value. There is strong agreement between the
finite element and analytic solutions (Figure 2-2), with errors on the order of a few percent - a
number consistent with the previous Weiss et al. (2016) benchmark and, in general, with
total—field finite element results reported in the geophysical literature.
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Figure 2-3. Top (a) and bottom (b) oblique views of the finite el-
ement mesh used for the benchmark exercise in Figure 2-2. Air
region is assume to lie above the top surface in (a) and is ex-
cluded from the computational domain by application of a ho-
mogeneous Neumann boundary condition on the air/earth inter-
face. In (c) a zoomed in view of the refinement zone highlighted
by the red square in (a). In (d), further zooming on the red square
in (c) with a cutaway showing the set of vertical edges repre-
senting the infinitesimally thin vertical cylinder in Figure 2-2.

Recall that a principal advantage of using edge—based conductivities is that thin conductors (or,
potentially, resistors) such as that described above needn't be explicitly discretized in the
computational grid. Rather, if their dimensions are small enough with respect to other features of
interest, they may instead be represented as a set of infinitesimally thin edges, each connecting
two nodes within the grid. Hence, the grid used in the benchmark just described contains no
features attempting to replicate the interface between the cylinder and the halfspace in which it's
embedded. Instead, the "cylinder is approximated in the finite element rnesh by a set of

37



continuous vertical edges (or line) with 1 m uniform node spacing, extending from the air/earth
interface to a depth of 100 m. Node spacing between the 1 A surface point source and the cylinder
is 1 m for source/cylinder separation less than 100 m, 10 m for separation values 100-250 m, and
30 m for separations beyond that, out to 500 m (Figure 2-3).
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Figure 2-4. Comparison between finite element solutions of to-
tal electric potential for a moderately conductive, horizontal disk
buried in a resistive halfspace subject to a 1 A point source on
the air/earth interface (see inset). Shown by the circles are finite
element solutions along the air/earth interface, centered over
the disk, for the case where the disk is finite thickness and de-
scribed by a conductivity value prescribed to tetrahedra within
the disk volume. Shown by the dots are solutions where the
disk is infinitely thin, with anomalous conductivity represented
by an equivalent vertical conductance assigned to facets on the
disk's top side.

Having demonstrated agreement between the volume—based conductivity model and analytic
solutions (Weiss et al., 2016), and now between the infinitesimally thin edge—based conductivity
model and analytic solutions (this study), we turn our attention to consistency between the facet—
and volume—based conductivity models. In doing so, we complete the logical syllogism of
benchmarking the hierarchical model concept in Eq (2.3). As an example calculation, take a 1 m
thick disk of radius 35 m, lying horizontally at a depth of 10 m and excited by a unit amplitude
point source centered above the disk (inset, Figure 2-4). Choosing a disk conductivity of 1.0 S/m
and a background conductivity of 0.001 S/m, the computed values of the electric potential on the
air/earth interface for a volume—based model, where the disk is represented by tetrahedra with
edge lengths approximately 1.4 m and conductivity 1 S/m, are in strong agreement with computed
values where the disk is represented by facets at a depth 10 m with conductance s = 1 S/m x 1 m
= 1 S (Figure 2-4). That is, for each model there are the same number of nodes (N = 200, 902)
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and tetrahedra (Nv = 1,177 ,7 57), of which 28,747 were constrained to the volume of the thin
disk. In the facet model, this subset of tetrahedra were assigned the background conductivity
value, and instead, the NF = 8624 triangles on the top side of the disk were assigned s = 1. Note
that NF << Nv for the facet model, and therefore the added cost of computing the second
summation in Eq (2-13) is minimal, especially when considering that there are 16 elements in
each element matrix 1(1 versus only 9 in K. Further calculations where disk conductivity is
varied between 0.01 and 10 S/m show similar agreement for the smaller, and more sensitive,
scattered potentials (Figure 2-5).

Volume/Facet Consistency Check

-80 -60 -40 —20 0 20 40 60 80
horizontal position [m]

Figure 2-5. Comparison of finite element solutions of the scat-
tered electric potential for a series of (0.01, 0.1, 1.0 and 10 S/m)
conductive thin disks embedded in a 0.001 S/m halfspace, sub-
ject to a 1 A point source on the air/earth interface directly over
disk center (see inset).

Examination of the cross section of electric field in a vertical plane through the center of the disk
gives some indication of why the facet model is an appropriate representation for conductive
features. Because the disk is conductive, one finds that the magnitude of the vertical gradient in
the potential in the disk is far less than the magnitude in the horizontal direction (Figure 2-6).
Hence, in the limit of very thin, but finitely conducting disk, the potential is reasonably
approximated by a continuous, two-dimensional function along the disk face. In the limit of an
infinitely conducting disk this function is, of course, a constant. In contrast, when the disk is
resistive the potential is discontinuous in the vertical direction in the limit of an infinitely thin disk
(Figure 2-7). The conductivity model Eq (2.3) is not invalidated in such a case - rather, the finite
element basis itself must be modified to admit tears (discontinuities) in the solution. The mesh is
modified such that a surface across which a discontinuity is to be enforced is twice discretized,
with one set of nodes for facets corresponding to elements on one side of the mesh, and another
set of nodes for facets of elements on the opposite side (Figure 2-8). Imposing a homogeneous
Neumann boundary condition on the tear - quite easy to do - implies that the resistor is both
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Figure 2-6. Vertical cross section of electric potential through
the center of the disk in Figure 2-5 (left: fact model, right: vol-
ume model, top: 0.1 S/m disk, bottom 10 S/m disk).

infinitely thin and infinitely resistive. Algorithmically efficient means of accommodating an
infinitely thin, but resistive, disk using the mesh tearing method are not immediately obvious at
this time, but neither are they the focus of the current study. Further study of this tangential
sub—topic is deferred to a future publication.

2.5. MULTI-LATERAL WELL SIMULATION

To demonstrate the flexibility of the proposed model representation, Eq (2.3), a set of numerical
experiments have been devised which simulate the DC response of a multi-lateral well
configuration, where the geology is described by conductivity c on tetrahedral elements, the
borehole is described by conductivity—area products t on tetrahedral edges and fractures are
described by conductance s on tetrahedral facets. Thus, only the path of the borehole need be
discretized, rather than actual borehole diameter and wall thickness. Similarly, only the fracture
planes need discretization, and not some thin, but finite, slab populated by many small elements —
a common, but computationally cumbersome approach (c.f. Commer et al., 2015; Um et al., 2015;
Haber et al., 2016; Weiss et al., 2016). For the simulation results that follow, a multi—lateral well
configuration is considered, consisting of a vertical borehole from which a set of 5 horizontal
wells extending 1000 in length are located at 1000 m depth (Figure 2-9, right). With lateral
separation of 200 m, these wells cover an area — 1 km2. To minimize the effects of a complicated
geology (e.g. Weiss et al., 2016), layering and heterogeneity are neglected and, instead, the wells
reside in a uniform 0.001 S/m halfspace. Following the example in Weiss et al. (2016), the well
system is energized by a 1 A source located in the heel of the central well. The well casing is
discretized by a set of connected tetrahedral edges, geometrically conformal to the well bore path
and with 20 m node spacing — equivalent to roughly 2 sections of standard well casing.

Recognizing that casing conductivity affects the DC electrical response, end member values
1 x 105 and 5 x 105 S.m of the conductivity—area product t in Eq (2.3) are considered. Assuming
a 0.1 m radius well and with 0.025 m wall thickness, these t values correspond to casing
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Figure 2-7. Vertical cross section of electric potential through
the center of a resistive disk in a 1.0 S/m background, with ge-
ometry the same as shown in Figure 2-5. Top: Resistive disk is
represented using a volume model with disk conductivity 0.001
S/m and thickness 1.0 m. Bottom: Finite thickness disk replaced
with a circular tear in the finite element mesh coincident with the
top surface of the disk, on which is imposed a homogeneous
Neumann boundary condition, thus implying an infinitely thin
and resistive disk.

conductivity 7.3 x 105 and 3.6 x 106 S/m, respectively. Although the well fluid inside the casing
does constitute 56% of the cross sectional area of the fluid—casing system under this geometry,
its conductivity is so small (even with a generous upper bound for hypersaline brines at 10 S/m)
that it contributes little to the overall t value. Under these assumptions, we find that the voltage
drop along the horizontal well casings of a multi—lateral have magnitudes on the order of 10 mV
for resistive casing and 1 mV for conductive casing (Figure 2-9, left). Inspection of the voltage
gradients shows the direction taken by the casing current (not the leakage current) along the
multi—lateral circuit, demonstrating agreement with Kirchhoff's current law, even though it is not
explicitly imposed on the system. When considering the big picture of casing voltages and those
distributed throughout the surrounding geology, one finds that the variation along the casing is
small in comparison, and that the multi-lateral system energizes the formation between the wells
to a voltage between 200 and 300 mV, outside of which there is a rapid decay to a few lOs of mV
(Figure 2-10).

Fractures are introduced into the model as a set of four parallel ellipses, 100 m wide and 40 m
tall, centered on the middle well of the multi—lateral, 200 m from the heel with 10 m spacing
(Figure 2-11). Taking a high end—member estimate of s = 1 S total fracture conductance, the
ellipses are discretized via triangular facets with 3 m edge length so that the elliptical shape is
approximated to first order. As was shown in Weiss et al. (2016), the effect of the fractures is to
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Figure 2-8. Close up of finite element mesh used for calculation
of electric potential in Figure 2-7 (bottom), where a tear in the
mesh — along with a homogeneous Neumann boundary condi-
tion — is imposed to represent an infinitely thin and infinitely
resistive circular disk. Mesh edges corresponding to the up-
per (yellow) and lower (red) surfaces of the zero—thickness disk
show that nodes on either side of the tear do not require a one—
to-one spatial correspondence. Rather, each side may be dis-
cretized independently except on the perimeter where they must
match. For scale, element edges are roughly 1 m in length in this
figure.

lower the overall potential of the connected casing system (Figure 2-12). And whereas there is
demonstrable leakage current in each of the modeling scenarios (fractures present and absent), the
difference in casing potential between the two shows comparatively little along—casing variability,
with the notable exception of the fracture location itself (Figure 2-13). This observation is
consistent the the results in Weiss et al. (2016) where the voltage difference due to a fracture
system can be reasonably approximated by uniform line charge along the casing plus a point
charge of opposite sign at the fracture location.

As a final set of numerical experiments, the multi—lateral system is modified such that horizontal
segments are interleaved frorn two, independent, downgoing wells but still offer the same
coverage at 1000 m depth (Figure 2-14). In this design, the center and outerrnost wells are
electrically connected through one vertical well, whereas the two intermediate wells are
electrically isolated from the other three and connected instead by another vertical well. This
scenario allows for testing of the passive coupling between isolated, but nearby, wells and
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Figure 2-9. Casing voltage (left) for multi-lateral well geometry
(right) in a 0.001 S/m formation. Assuming a 0.2 m diameter
borehole casing with .025 m wall thickness, effect of casing con-
ductivities 7.3 x 105 and 3.6 x 106 S/m are shown by the black and
red curves, respectively. Averaged over the cross sectional area
of the borehole, the fluid conductivity has negligible contribu-
tion to the total conductivity of the total conductivity—area prod-
uct of the combined fluid—borehole system. Also shown (open
arrows) is the direction of casing current given by the gradient
of the casing potential.

addresses the question of fracture mapping by adjacent wells. As in the previous example, we see
that among the connected wells, the effect of the fractures is to reduce the overall casing potential
as energy is leaked into formation by the fractures. In response, the two coupled wells each
realize an increase in electric potential as they effectively capture the energy lost through the
fracture (Figure 2-15). Thus, the effect on the coupled wells is a voltage anomaly of opposite sign
to that of the primary, fully connected wells. We also see that the casing current in horizontal
section of the three primary wells is in the same direction as that in the two coupled wells (heel to
toe in the primary is the same direction as toe to heel in the coupled). Voltage differences between
the fracture/no—fracture case similar to that seen before, with the unsurprising observation that the
voltage differences in the two coupled wells are much smaller than that in the three primary wells
(Figure 2-16).

Estimates of the change in electric field due on the air/earth interface due the presence of fractures
in these models show a considerable dependence on the well geometry (Figure 2-17). In
particular, we find that the overall magnitude in the difference signal is significantly reduced in
the case of the multi—lateral system when compared to the case of a single well — an observation
consistent with comparatively less leakage current in the single well system. Additionally, there is
a low amplitude anomaly over the toe of the fully connected multi—lateral system not seen in the
single well example (Figure 2-17, middle). When a multi—lateral configuration is distributed
between two vertical wells (Figure 2-17, bottom), the second vertical well connecting the two
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Figure 2-10. Example calculation of a multi-lateral casing excita-
tion (cutaway view, units V) where the well casing is represented
by an infinitesimally thin, edge-based conductivity model (mid-
dle term, Eq 2-3). Point 1 A source is located at the heel of
the center well, C. Wells are 1000 m deep and extend 1000 m
horizontally with a lateral separation of 200 m. Formation con-
ductivity is 0.001 S/m; well casing + fluid represented by a line
distribution of t = 5 x 104 S.m (.1 m radius casing, 0.025 m wall
thickness, conductivity 3.6 x 106 S/m).

interleaved horizontal sections acts as a current sink, thus increasing the potential gradient along a
line connecting the two well heads. This effective "source' and "sinle is consistent with the
(vertical) gradient in difference voltage seen at well head (Figure 2-16).

2.6. DISCUSSION

A few remarks are first offered to address the computational burden of modeling the fractures and
borehole in the preceding examples. A set of 4 elliptical fractures with minor and major axes 20
and 50 m, respectively, have a combined surface area of 7r x 20 m x50 m =— 3142 m2.
Discretized by (quasi) regular facets with edge length 3 m, the fractures require NF = 2616 facets
for their summation in Eq (2.3). Furthermore, with borehole discretization on 20 m node spacing,
the coupled multi—lateral well system requires NE = 457 edges in third summation of Eq (2.3).
Following Weiss (2001) and Weiss et al. (2016), the finite element linear system of equations is
solved iteratively, where at each iteration the action of the coefficient matrix is computed on the
fly by summing over elements — of which, there are Nv — 3M tetrahedra (490k nodes) in the
multi—lateral models. Hence, the number of additional floating point operations required for
including the fractures well casing is small and results in a statistically insignificant increase in
runtime for these models. In contrast, the effect of high casing and fracture conductivity is to
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Figure 2-11. Total electric potential for the multi—lateral system
in Figures 2-9 and 2-10, with the addition of a fracture system
located 200 m downhole from the heel in well C. Fractures are
modeled as a set of 4 infinitesimally thin ellipses, 60 m tall and
100 m wide, with 10 m separation, oriented normal to the well
bore. For each, fracture conductance, s, is 1 S. (left: oblique
view, full color scale; middle: plan view, compressed color
scale; right, zoomed oblique view, compressed color scale).

increase the condition number of the finite element coefficient matrix, thus reducing the rate at
which a Jacobi—preconditioned conjugate gradient solver converges (Figure 2-18) — an
observation familiar to finite element practitioners. Run times for these models are on the order of
a couple minutes, thoroughly unoptimized, on a MacBook Pro equipped with 16 GB memory and
a dual—core 3 GHz Intel i7 CPU chip.

Geologic settings with elevated fracture conductivity, like that in the previous examples, can
result from either natural causes such as secondary mineralization or engineered experiments
where the fracture is filled with brine, a tracer fluid, or conductive proppant. With regard to the
latter, production and completion of unconventionals typically requires proper accounting of the
anisotropic effects of shales. Although the first term in Eq (2.3) — where the volume/tet based
conductivity term resides — is written as isotropic conductivity (the product of a scalar cre with the
rank 2 identity tensor), it's not clear that this is a necessary restriction. Rather, we are free to
define the volume conductivity by a generalized, symmetric, rank 2 tensor in the (x, y, z) reference
frame of the model domain. Doing so would allow for modelling transverse isotropic shales, of
which there are only four degrees of freedom: two Euler angles describing the orientation of the
bedding plane; and, two conductivity values representing the plane—parallel and plane—normal
conductivities.

The benchmarking examples shown here demonstrate that hierarchical conductivity model Eq
(2.3) is both self consistent and generates results that agree with independent reference solutions
when the facets and edges are relatively conductive with respect to the volume elements.
However, it's also been shown that the jump discontinuity in electric potential across the face of
thin resistive disk requires more of the finite element formulation than the modified model Eq
(2.3). When used in the context of DC resistivity simulations, the conductivity model must be
accompanied by a suitable finite element discretization — one which admits step discontinuities —
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Figure 2-12. Effect of fractures on casing voltage of well bores
A-E for the model shown in Figures 2-10 and 2-11.

for the evaluation of arbitrary conductivity structure. Extending the concept of the hierarchical
material properties model to three-dimensional, time-dependent electromagnetics (either
frequency domain or generalized time domain) is an open question best pursued, for several
reasons, in future research. For example, the frequency domain problem has been cast is all
varieties of magnetic-, electric- and potential-field formulations, and it remains to be understood
how the facet- and edge-based conductivities may frustrate the numerical solution, as resistors do
in DC, without additional mesh modification. In the context of exploration geophysics, the
borehole examples presented here suggest investigating whether magnetic permeability can also
be distributed by an analogous hierarchical model, thereby allowing for economical modeling of
highly conductive and permeable steel casing. In principle, it appears that the mathematical
structure of Eq (2.3) would admit such an idea, but at first blush, its implementation is
problematic. That is, in the frequency domain electric field formulation, the governing equation in
a source-free region is

V x [µ-1 • (V x E)] ico (a • E) = 0,

and it's clear that although high-conductivity facets and edges are well represented by their
corresponding se and te coefficients in a, a high-permeability edge or facet in µ-1 results in
analogous coefficients that, in the limit of infinite permeability, are zero and hence safely ignored.
Recasting the governing Maxwell equations in terms of a second-order magnetic field
formulation does not resolve the conflict, but rather shifts the problem from the µ-1 term to the
corresponding a-1 term nested between V x . One possible workaround is to admit se and te
coefficients with negative values, thus making a weighted sum (for unit consistency) of sae, se and
te representative of the facet and edge conductance. However, doing so would still require
compatibility with the underlying discretization, which in the case of DC resistivity, necessitated
the introduction of tears in the finite element mesh. Lastly, it's conceivable that use of the
hierarchical model, Eq (2.3), for conductivity, permeability, or both, may require re-evaluation of
the time-stepping requirements for transient calculations since the facet and edge structures
contained in the model are infinitesimally thin. Of course, such considerations could be avoided
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Figure 2-13. Difference in casing voltage on well bores A—E for
the fracture/no-fracture results in Figure 2-12.

(or at least, deferred to a later time) by working first in the frequency domain, followed by Fourier
transform.

The infinitely thin facets and edges pose some interesting opportunities regarding inversion and
recovery of sharp features in the resulting conductivity model. Historically, recovery of sharp
features or jumps has be achieved by introducing tears (surfaces informed by supplementary
geologic information) in the earth model, across which smoothness regularization is not enforced.
Examples of this include fracture imaging (Robinson et al., 2013) and reservoir characterization
(Hoversten et al., 2001). With the hierarchical conductivity model evaluated here, it's conceivable
that an alternative inversion strategy may prove profitable: inverting for either se or te alone,
perhaps with internal smoothing, to constrain the model to a specific subsurface region.
Following the development of McGillivray et al. (1994) for adjoint sensitivities, it's
straightforward to show that the Fréchet derivative of the potential difference between points A
and B in the subsurface is given by fFe V23ii • V23ttdx2 and fEe V1a • V1 u dx, for the e'th facet and

edge, respectively, where a is the electric potential for adjoint source f = 3 (x — x13 ) — (x — ).
These functions for the Fréchet derivatives are entirely analagous to the expressions required for
3D sensitivity calculation, and therefore pose little additional burden for their use in some
previously developed inversion algorithm.

2.7. CONCLUSIONS

A novel and computationally economical model for hierarchical electrical conductivity has been
introduced and exercised in the context of finite element analysis of the DC resistivity problem on
an unstructured tetrahedral mesh. Electrical properties are assigned to, not only, volume—based
tetrahedra, but also to infinitesimally thin facet— and edge—based elements of the mesh, thus
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Figure 2-14. Modification of multi—lateral configuration (Figure
2-9) where wells B and D are galvanically coupled to wells A, C
and E, rather than in direct electrical contact through connected
segments of well casing.

allowing an approximate, but geometrically conforrnable, representation of thin, strong
conductors such as fractures and well casing. Numerical experiments show agreement between
numerical solutions and independent analytic reference solutions. Numerical experiments also
show consistency in results between fine-scale discretization of thin structures and their surface—
and edge—based counterparts. In the context of DC resistivity, the hierarchical model does not
suitably capture the physics of infinitely thin resistors because of the intrinsic discontinuity in
electric potential introduced therein. Rather, the physics of such resistive structures is shown to be
reasonably captured through tears in the finite element mesh which admit discrete jumps across a
surface in the computational domain. Using the edge—based conductivity elements, a series of
numerical experiments on a hypothetical and idealized multi—lateral production well illustrate the
effect of well casing geometry, including coupling from neighboring wells, on casing voltage,
suggesting that actual casing conductivity should be accounted for in DC simulations of
production/completion operations of an active oilfield. Furthermore, introduction of fractures
through facet—based elements into the multi—lateral simulation is shown to be computationally
economical and to confirm the physics seen in previous simulations where the borehole casing
and fractures were explicitly discretized through extreme meshing of many very small volume
elements. Predicted measurements of electric field on Earth's surface for single, multi—lateral and
coupled multi—lateral configurations show distinct patterns of amplitude and direction such that
neglecting a complete model of subsurface well casing out of computational convenience or
limited computational resources may strongly compromise the predictive value of the simulation
result.
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2.8. APPENDIX: DERIVATION OF THE ELEMENT
STIFFNESS MATRICES

Recall from Eq (2.12) and the discussion that follows, that element stiffness matrix lq is formed
by integration of V23 0i (x) • V230,1(x) for i , j = 1, 2,3 over the triangular facet e . Gradients are
taken in plane of the facet, denoted locally by the orthogonal direction vectors e2 and e3 (Figure
2-19). Whereas computing such gradients in two dimensions is relatively straightforward and
covered in most elementary texts on finite element analysis, the situation faced here, where facets
are arbitrarily oriented in (x, y, z), is less common, and, therefore, merits some attention. Letting
x2 and x3 be the local coordinates in the e2 and e3 directions, respectively, our goal is to evaluate

fFe
V230i V2301 dx2 =

a0j +dOi d01) dx2CbC3
jFe (9.1C2. dx2 dx3 dx3

(2.14)

over the triangular facet Fe. Values of this integral constitute the i jth element of the 3 x 3 matrix
K. By choosing e2 parallel with the facet edge connecting nodes 1 and 2, we see from Figure
2-19 that all derivatives with respect to x2 are simple to compute and given by

&Pi —1 dO2 +1

dx2 1r2i r dx2 17'211
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and
dO3 0

dx2
(2.15)
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where rii = r j— ri is the vector pointing from node i to node j. Note that these vectors needn't be
specified in the local (x2,x3) coordinate system, but rather may conveniently remain in some
global (x,y,z) reference frame since norms, dot and cross products are invariant under coordinate
transformation. Calculation of the derivatives with respect to x3 is slightly more involved, so let's
start by observing that the distance between node 3 and the line connecting nodes 1 and 2 is
1r311sin 9= Ir21 x r311/1r21 1, whereupon it's clear that

a03 
= Ir211 

ax3 17.21 xr31 1
. (2.16)

To determine derivatives of 01, refer to Figure 2-19 and observe that 1r311cos 0 = r21 • r31/1r21 1
takes on values of 0 to 1r211 as point p varies between nodes 1 and 2. Therefore the quantity

1 
r21 • r31

11'211
2

describes a linear function of position along the line connecting nodes 1 and 2, whose value is
unity at node 1 and zero at node 2. We can now immediately write the remaining derivatives in Eq
(2.14):

&Pi _ (r21 .r31 1) (  Ir211 
ax3 Ir2112 r311

To simplify notation, let

a =
11'211'

and
(302
ax3 Ir2112 (Ir21 x r31 1 •

r21 • r31 Ir211

r21 • r31 Ir211 
11'211

2b = and c = ,
1r21 x r31
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(2.18)



and denote the area of the facet by A = x r311. The element stiffness matrix for a given facet
e in Eq (2.13) is

( 
a2 + (b — 1)2c2 —a2 — (b —1)bc2 (b — 1)c2

K3e = A —a2 - (b — 1)bc2 a2 + b2c2 —bc2
(b — 1)c2 —bc2 c2

(2.19)

Derivation of edge—based the element stiffness matrix Ke2 in Eq (2.13) is far less involved than for
the facet—based case Eq (2.19). Referring back to Figure (2-1) where el is parallel to the edge
connecting nodes 1 and 2, one sees that Vi0i = axt 01 = —1/1r2d, and V102 = dx1452 = 1/11'211.
Therefore, evaluation of

L v “Pi •v jdX =e 

over the eth edge is trivial and we find

dOi dOi dx
jEe aX1 aX1 1

K2 
1 1 —1

e= Ir211 (-1 1
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Figure 2-17. Plan view of difference in electric field on the
air/earth interface due to the presence of fractures for three dif-
ferent well systems: single well (top); multi—lateral (middle); and
coupled multi—lateral (bottom). Well geometry is the same as in
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Figure 2-19. Sketch of a facet (top) and contours (red) of its cor-
responding nodal basis functions (bottom) in local enumera-
tion. Length of the edge between nodes 1 and 3 projected in
the e2 and e3 directions is annotated in the top figure in terms
of operations on rii = —ri, the vector pointing from node i to
node j.
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3. NEUMANN SERIES ANALYSIS OF
WELLBORE RESPONSE

3.1. SUMMARY

The feasibility of Neumann series expansion of Maxwell's equations in the electrostatic limit is
investigated for potentially rapid and approximate subsurface imaging of geologic features
proximal to metallic infrastructure in an oilfield environment. While generally useful for efficient
modeling of mild conductivity perturbations in uncluttered settings, we raise the question of its
suitability for situations, such as oilfield, where metallic artifacts are pervasive, and in some
cases, in direct electrical contact with the conductivity perturbation on which the Neumann series
is computed. Convergence of the Neumann series and its residual error are computed using the
hierarchical finite element framework for a canonical oilfield model consisting of an "L" shaped,
steel—cased well, energized by a steady state electrode, and penetrating a small set of mildly
conducting fractures near the heel of the well. For a given node spacing h in the finite element
mesh, we find that the Neumann series is ultimately convergent if the conductivity is small
enough — a result consistent with previous presumptions on the necessity of small conductivity
perturbations. However, we also demonstrate that the spectral radius of the Neumann series
operator grows as — 1/h, thus suggesting that in the limit of the continuous problem h 0, the
Neumann series is intrinsically divergent for all conductivity perturbation, regardless of their
smallness. The hierarchical finite element methodology itself is critically analyzed and shown to
possess the h2 error convergence of traditional linear finite elements, thereby supporting the
conclusion of an inescapably divergent Neumann series for this benchmark example. Application
of the Neumann series to oilfield problems with metallic clutter should therefore be done with
careful consideration to the coupling between infrastructure and geology. The methods used here
are demonstrably useful in such circumstances.

3.2. INTRODUCTION

A problem of long—standing interest to the geophysical community is the characterization of
either naturally—occurring or engineered fracture systems where the fracture is impregnated with
material, a contrast agent, which generates a data signature distinctive from that of the
surrounding geology when subjected to geophysical interrogation. In particular, application of the
electrical and electromagnetic methods through the combined exploitation of existing metallic
infrastructure and electrically conductive or magnetically permeable contrast agents has been the
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subject of a recent body of literature in oilfield geophysics (e.g. Yang et al., 2016; Zeng et al.,
2017; Zhang et al., 2017; Jannin et al., 2017; Hickey et al., 2017; Couchman and Everett, 2017,
and references therein). One considerable challenge in the interpretation of these data is the
computational burden of 3D forward modeling the widely disparate length scales on which the
fractures, infrastructure and regional geology reside — a problem exacerbated by extreme range in
electrical conductivity values spanning the geology ( < 0.1 S/m), fractures (0.1 — 1.0 S/m) and
steel (106 S/m). And while the steel well casing is volumetrically insignificant when compared to
rock over the field scale, it's widely recognized that electromagnetic scattering from long, strong
conductors can pollute survey data with a spatially extensive footprint that can overwhelm the
subtle signatures of the geologic features of interest. Explicit modeling of the casing with
volumetric simplices is problematic because of the requirement that simplices be roughly
equidimensional and that hundreds of millions of them are therefore required to represent a few
kilometers of casing. As a corollary, brute force discretization of fractures a few millimeters in
thickness, but meters in lateral extent, is also computationally explosive unless an alternative,
approximate method can be employed.

One such method is the generalized Neumann series (Zhdanov and Fang, 1996). The
attractiveness of the Neumann series as a solution method lies in its simplicity and speed: the
anomalous field arising from a conductivity anomaly is computed as the product of the incident,
unperturbed, electric (or magnetic) field and a polynomial in the fundamental linear operator
representing integration of Green's function and conductivity contrast over the anomalous region.
In choosing the Green's function to be that of the full, anomaly—bearing earth model, the series is
exact in just one term. For complicated earth models, the Green's function is typically unavailable
except through numerical methods and, instead, the Green's function is computed for a model
absent any troublesome features — in the oilfield case, for example, steel casing and/or fractures.
Doing so thus requires consideration of the full polynomial expansion for a target solution
accuracy, and herein lies the problem. Convergence of the Neumann series only holds for holds
for weak conductivity perturbations, although clever modifications (e.g. Habashy et al., 1993;
Zhdanov and Fang, 1996; Christensen, 1996; Avdeev et al., 1997) can extend its range of
usefulness considerably.

For oilfield scenarios where an electrically conductive fracture system is near (or in contact with)
the strongly conductive steel casing, forward modeling in the electrostatic limit the response of
weakly conducting fracture perturbations (,,, 1 : 3 contrast red with respect to background), 1 km
depth, adjacent to the borehole) reveals that the dominant anomalous electric field arises from the
borehole casing itself. This anomalous field radiates out from the well head to distances of several
km with a second—order azimuthal dependence arising from the lateral section of wellbore casing
at depth (c.f. Weiss, 2017, and references therein). A third—order effect is the scattering field
from the fractures themselves, but this is localized to the vicinity of the fractures and does not
measurably propagate to the Earth's surface. Hence, there is numerical evidence demonstrating
that it is the coupling between the fracture perturbation and steel casing which is important, not
the magnitude of the perturbation alone. This raises the question: in cases where small
conductivity perturbations are near (or in contact) with a strongly conducting subsurface feature
such as metallic infrastructure, can the Neumann series be used to approximate the anomalous
electromagnetic response? If so, then at least one need only worry about modeling (via the
convolution kernel) the infrastructure itself, rather than the more burdensome and coupled
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perturbation/infrastructure system. To address this question, we employ hierarchical material
properties in finite element analysis (Weiss, 2017) to construct a finite—dimensional Neumann
series matrix operator and examine the series convergence explicitly.

Recall that in the hierarchical material model concept for tetrahedral finite element modeling, the
electrical conductivity a is represented as a summation of conductivities a, associated with
tetrahedral elements, transverse conductances se associated with triangular facets, and
conductivity. area products te associated with the remaining edges. As such, one may use the
method to straightforwardly and efficiently evaluate the coupled fracture/casing problem in a
single forward calculation (Weiss, 2017), no Neumann series required. Note that adoption of the
Weiss (or any other) generalized 3D algorithm in an industrial workflow where Neumann series
analysis is the norm could be seen as disruptive or even cost prohibitive. Hence, there is merit in
asking whether Neumann series can do the job, if needed. In the present study, the borehole
casing is represented in the Neumann series matrix operator through the edge—based variables te,
and the fractures through the facet—based variables se, leading instead to a forward modeling
method that allows us to test the convergence of a Neumann series expansion built directly on
infinitesimally thin fracture perturbations se alone. This method, where the Neumann series is
based on the discrete form of the Maxwell equations, complements the more common approach
where the linear operator derives, ultimately, from repeated application of Green's theorem (e.g.
Habashy et al., 1993; Avdeev et al., 1997).

Although the unstructured tetrahedral mesh of the hierarchical finite elements (Weiss, 2017)
permits almost arbitrary complexity in the representation of oilfield infrastructure (Weiss and
Wilson, 2017), we restrict the present analysis to a rectilinear geometry — a simple, ̀L' shaped
well with vertical fractures near the well heel embedded in a uniform geology (Figure 3-1) — so
that results may most easily be built upon by others and contrasted with forward modeling
schemes restricted (in practice) to Cartesian geometries such as finite differences or their variants
(e.g. Yang et al., 2016). With the hierarchical finite element analysis, we also avoid questions
about the suitability of other forward modeling approaches in which the electrically charged
borehole casing is replaced by an approximate distributed source, derived perhaps from
transmission line theory (Kaufman and Wightman, 1993) or other, hybrid methods (e.g.
Nieuwenhuis et al., 2015; Tang et al., 2015) in an attempt to minimize the computational burden
of its direct calculation.

Our analysis strategy is relatively straightforward. A Neumann series expansion is computed for
the electrostatic response over the canonical model described above using the (Weiss, 2017)
algorithm for fractures whose conductivity contrasts range from mild to moderate. We examine
the convergence rate of the Neumann series and its residual as a function of truncation order in
the polynomial series. We then confirm this convergence behavior through an eigenvalue analysis,
and extend this analysis to determine the effect of mesh discretization on the spectral radius of the
linear operator on which the Neumann series is built. Lastly, we expand the already presented
benchmarking exercise (Weiss, 2017) to now include a set of verification and validation results
which address any bias our numerical method may have introduced into the convergence behavior
we observe with the Neumann series expansion.
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Figure 3-1. Sketch of the horizontal well geometry and fractures.
Steel borehole casing of conductivity a = 5 x 106 S/m with outer
diameter 0.2 m and 0.02 m wall thickness is assumed, result-
ing in a conductivity-area product te — 5 x 104 S • m. Fractures
are equally spaced, vertically oriented ellipses centered on the
borehole whose width (W), height (H) and location are noted on
the figure. Fracture conductance se ranges from 0.01 to 1.0 S for
the models evaluated herein.

3.3. THEORY

Throughout an electrically conductive medium a subject to an imposed electric current density

Js, invariant in time, the static electric field E = VO derives from Maxwell's equations as the
solution the well—known Poisson equation,

—V • aVO = V •Js• (3.1)

As an auxiliary problem, define a "reference' medium a0, with 0 = 00 + 0(1) and 00 solving the
equation —V • a0000 = V • Js. As a consequence, OW solves equation
—V • aVO (1) = V • (a — a0)V00, and the sum 00 + 0(1) is exactly equal to O. Note the use of sub—
and super—script i on 0: the former referring to the ith term in a sequence of 0 values; and, the
latter being the truncation error from only considering i terms of the sequence. Consider,
however, when for whatever reason, the effort required in solving for OM, as manifest in the
material property a, is significantly greater than the case when a is simply the reference medium
a0. In other words, we can let 0(1) = 01 + 0(2) and prefer to solve —V • a0001 = V • (a — a0)V00.
If 0(2) is sufficiently small, then 0 — 00 + 01 is an acceptable approximation. Evaluation of the
"smallness" of 0(2) is found, therefore, by solving —V • aVO (2) = V • (a - a0)V01. A principal
question to address is determining the conditions under which this first order approximation
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applies. Secondly, one may recursively extend this line of reasoning, letting 0 (2) = 02 + 0 (3)
solving —V • 6oV02 = V • (a — 60)V01. The approximation 0 00+ 01+ 02 is therefore
adequate when 0(3), the solution to —V • 6V0(3) = V • (CY — 6o)V02, is sufficiently small.

We can generalize this recursive sequence of operations to N terms in the following way. Define
the total solution

such that

and

N
0 L oi o(N+i)

i=0

—v . cyovoi (a — 60)V0i_1 V i = 1,2,...

(3.2)

(3.3)

—V • CYV O(N +1) = V. (a — ao)VON. (3.4)

To initiate the sequence at i = 0, the function 00 is defined as above. It's relevant to note that if the
difference in electric potential 0 — 00 is due to a time—lapse change of state from 00 to a, we
have

N

0 — 00 = (pi ± 00I+1).

i=i
(3.5)

Consider now that the continuous Poisson equation(s) previously discussed are solved by some
numerical method yielding, as the solution to linear system of equations, a finite—dimensional
solution vector with the analogous notation of sub— and superscripts,

N

X = EXi X(N+1)
i=0

(3.6)

Define vector b as the discrete representation of the current density term V • J, in our numerical
method, matrix K for the discrete form of V • aV and Ko for V • 60V. For example, when using
finite elements, the matrices K and Ko are the global stiffness matrices for media a and 00,
respectively. Regardless of the specific numerical method, in full generality we may write

Kx = b (3.7)

with
Koxo = b and Kx(1) = (51(xo, (3.8)

where x = xo + x(1) and SK = K — Ko. And in following through with the recursion described
above, only now for the discrete case, we find,

xi = (K01 (5K) xj_1 = (K0-1 (5K) xo and x(i) = (K-1 3K) (K-18K)i xo, (3.9)

where the superscript Oi represents i successive actions of matrix operator within the parenthesis.
Substituting Eq (3.9) into Eq (3.6), it's now evident that the total (discrete) solution x is the sum
of reference solution xo, an N—term Neumann series and a residual x(N+1)

x = xo + (To + + • • • + xo + xWO, (3.10)
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where To = K0-1 3K. Similarly, we observe that the residual is itself a Neumann series in terms of

T = K-1 3K such that x(N+l) = (T + T2 + • • • + TN+1) x0. And in closing, the change of state
from ao to a results, numerically, in the difference

X — X0 = (To + + • .. tin x0 + x(N+1),

representing the change in the electric scalar potential.

3.4. RESULTS

(3.11)

Although much of the prior work in Neumann series expansion for electromagnetic response has
taken place in the context of integral equation forward solvers (e.g. Avdeev et al., 1997; Zhdanov
and Fang, 1997; Avdeev et al., 2002) for fast computation, the present study uses the hierarchical
finite element method developed in Weiss (2017) to study the Neumann series properties because
it is both fast and able to handle directly the important, but volumetrically small, subsurface
features around which our Neumann series is constructed. Specifically, we evaluate the
electrostatic fields on and surrounding a horizontal well (Figure 3-1), on which lies a compact set
of vertical fractures with anomalous electrical conductivity from that of a uniform background
earth. Following Weiss (2017), the earth, fractures and edges are represented by material
properties associated with tetrahedra, their facets and edges, respectively, of an underlying finite
element discretization (Figure 3-2) on a linear nodal basis. Because the vanishingly thin fractures
are defined by their equivalent conductance and casing by the product of conductivity and
cross—sectional area, the method avoids the computationally explosive problem of volumetric
discretization millions of small, regular tetrahedron where over each a conductivity value is
defined. This hierarchical representation of material properties results in reduction of
computational burden (time and storage resource) in comparison to strictly volume—based
discretizations by several orders of magnitude.

For the examples presented here, the tetrahedral mesh covers a physical domain 10 x 10 x 5 km in
size representing only the earth region of study area, a region simply defined as a 0.01 S/m
halfspace. Homogenous Dirichlet boundary conditions are applied to the lateral sides and bottom
of the mesh out of convenience and to enforce decay of the potentials away from the source
location at the center of the top side of the mesh, the air/earth interface. On the top side of the
mesh a homogeneous Neumann boundary condition is (weakly) enforced through the variational
form of the governing Poisson equation, thus representing the interface between a conducting
earth and a perfectly resistive, overlying air layer. A few details on the mesh are as follows. The
region of interest is a roughly 2 km3 volume containing the horizontal well and fractures. Node
spacing in this region is between 5 and 20 m, with 5 m spacing on the "fracture' ellipses (see
Figures 3-1 and 3-2), 20 m spacing on the "borehole' and 10 m spacing on the air/earth interface.
Outside of this region, the node spacing grows smoothly toward the outer mesh boundaries where
node spacing is roughly 150 m. In total there are 514,728 mesh nodes and 3,085,751 tetrahedra,
on which 105 edges are given values te = 5 x 104 S•m to represent the borehole and 2616 facets
are given values se = 0.01, 0.1,1.0 S for each of the three models evaluated. Recall from Weiss
(2017) that te is the product of cross—sectional area of borehole times the electrical conductivity.
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Figure 3-2. Vertical slice of finite element mesh through the
borehole path (heavy line) and showing the set of 4 elliptical
fractures (red). Node spacing along the borehole is 10 m and
node spacing within the fracture planes is 3 m.

This value for te is consistent with a borehole casing model where steel conductivity is 5 x 106
S/m, 0.1 m borehole casing radius and 0.02 m thickness. Contributions to te from the casing fluid
are ignored because of their comparatively low conductivity and minimal contribution to the
overall te value. Similarly, se is the equivalent conductance of a thin sheet of conductivity a, and
thickness h such that se = a, h. Assuming h = 0.01, the values se = 0.01, 0.1, 1.0 S represent
"fracture conductivity values 1.0, 10.0 and 100.0 S/m, equivalent on par with conductive fluids
and contrast agents used for subsurface imaging (Robinson et al., 2013). For all models evaluated,
the hierarchical finite element system of equations (Weiss, 2017) on this discretization is solved
iteratively with Jacobi—preconditioned conjugate gradients (Hestenes and Stiefel, 1952) and
updates (Polak and Ribière, 1969), showing generally monotonic convergence of the £2 residual
with iteration count (Figure 3-3).

Choosing a reference earth conductivity model ao consisting of a uniform earth plus the
conductivity-area product, te associated with the steel casing, the Neumann series is thereby built
around the conductivity perturbation due to the fractures. The a — ao term in Eq (3.3 and 3.4) is
non—zero only on the fractures, and more specifically, by the values se. As demonstrated earlier,
one effect of introducing electrically conductive fractures on the borehole is to lower the
electrostatic potential on the borehole casing (Weiss, 2017), this same result is confirmed here
under similar exploration conditions (Figure 3-4 through 3-6) and variable fracture conductivity.
In each of the examples that follow, a 1 A source is positioned at the wellhead, driving current
down the steel casing into the formation. A return electrode is not considered here, thus making
the Earth model sourced by a "single pole. Because surface measurements of electrostatic scalar
potential differences are known to be dominated by the response of the steel casing — regardless of
whether those data are "total fiele measurements or some time—lapse difference (a "scattered
fielr) — we focus our attention on the casing potential, from which the longitudinal casing
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Figure 3-3. Representative convergence of the Jacobi precondi-
tioned conjugate gradient solver — specifically, for facet conduc-
tance se = 0.1 S and solving the system Kox6 = 51(x5 from Eq (9)
for the 6th order term x6 in the Neumann series.

current can be derived by differentiation, and the radially directed leakage current, by
differentiation again.

The range of fracture conductances 0.01 to 1.0 S is sufficient to demonstrate the convergence
behaviors of the Neumann series. The 'exact' solution is that from the full (Earth + borehole +
fracture) model computed using the Weiss (2017) algorithm. In the case of mild fracture
perturbation se = 0.01 S, superposed on the background conductivity 0.01 S/m, the Neumann
series converges rapidly after 2 terms and remains stable in its high-accuracy approximation of
the true (scattered) potential when extra terms in the series are added (Figure 3-4). Relative error
of the N = 1 Neumann series is on the order of 1-2% for this example, with higher order terms
driving that figure down by a factor of 40. When, however, the fracture conductance is increased
to 0.1 S, the Neumann series converges initially for N = 1, 2,3, but then begins to oscillate and
rapidly diverge with increasing N (Figure 3-5). The best Neumann series approximations
(N = 2, 3) in this initial convergence sequence have relative error of 5% with the known solution.
Lastly, for a high contrast model se = 1.0 S, the Neumann series has, at best, a relative error
1.2/0.95 x 100% = 130% at N = 1 and significantly diverges away from the known solution with
the addition of each successive term (Figure 3-6). Computation of the residual x(1) by solving Eq
(3.9) yields results that are consistent with direct residual calculation and leads to values for the
reconstructed potential Liiv + x(N+1) that are visually indiscernible from direct calculation of
x — x0 under the eyeball norm.
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Figure 3-4. True scattered potential computed by direct differ-
encing x — xo (red, left panel) and Neumann series expansions
of orders 1 through 6 (left panel) for a fracture set with conduc-
tance s, = 0.01 S at measured depth 1200 m and excited by a
1 A source at the well head. Root mean square of the resid-
ual between the Nth order series and true solution (right panel)
showing rapid convergence and stability in series accuracy for
terms 4 through 6. Here, 'measured depth' is the the total along—
casing distance as measured from the well head.

3.5. DISCUSISON

The poor convergence of the Neumann series for high contrasts in fracture conductivity can be
understood quantitatively in terms of an eigenvalue analysis. We expect the series Eq (3.11) to
converge if its spectral radius — the absolute value of the maximum eigenvalue — is less than unity.
Calculation of the full eigenspectrum for matrix operator To, is computationally expensive
because it is both dense and large (dimension 500k x 500k). Furthermore, we solve the finite
element problem in the matrix—free framework (Weiss, 2001) to explicitly avoid excessive storage
costs for the matrices K and 6K. Calculation of the maximum eigenvalue, however, can be done
matrix—free by using the power method (Saad, 2011), in which the eigenvector v associated with
the maximum eigenvalue is approximated by successive k-iterates

Tovk
Vk+1 =  

11TOVk 112
(3.12)

until convergence where v vk+1. At each iteration of this sequence, the corresponding estimate
k) (

for the maximum eigenvalue Amax is therefore given in a least squares sense by

(k) V k x0Vk
Amax T •

Vk Vk
(3.13)

These iterates are computed matrix—free in two steps by first contracting the matrix 6K with
vector vk, followed by a conjugate gradient solve of the linear system Ko vk+1 = 6K vk as
described in Eq (3.10). The sequence is seeded at v0 with random numbers uniformly distributed
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Figure 3-5. True scattered potential computed by direct differ-
encing x — x0 (red, left panel), Neumann series expansions of
orders 1 and 2 (left panel), orders 3-5 (middle panel) and orders
6-8 (right panel), for a fracture set with conductance se = 0.1 S at
measured depth 1200 m and excited by a 1 A source at the well
head.

on (0,1) at terminates when the £2 of the residual, Ilyk+1 — vk M 2 , stops decreasing.

For the three fracture conductances 0.01, 0.1 and 1.0 S, (Figure 3.4 through 3-6, respectively), the
maximum eigenvalues estimated by Eq (3.13) are consistent with the convergence behavior we
find with their corresponding Neumann series (Figure 3-7). For the case of low fracture
conductance, 0.01 S, the maximum eigenvalue is roughly 0.4, a value less than the radius of
convergence of the Neumann series. For the other two cases, where maximum eigenvalue is
greater than the radius of convergence, the Neumann series is demonstrably divergent (Figure 3-5
and 3-6).

Further inspection of the maximum eigenvalue estimates for the three cases reveals an additional
consistency check. Referring back to Eq (3.4) and its corresponding finite element linear system
of equations, Eq (3.9), one sees that the difference in conductivity c — co is zero outside the
fracture and constant within. Therefore, the 66 = a — ao term is a constant prefactor in the
matrix 31( = S6KL where KL is the finite—element discretization of the Laplacian operator.
Eigenvalues of To = K0-13K = S6 • Ko-1KL thereby scale linearly as 3c and we may infer from

the results of the 1.0 S conductance model that the maximum eigenvalue of the matrix K0-1-KL for
this fracture/borehole model is approximately 41.1. This suggests that the maximum conductance
contrast for which a Neumann series approximation will converge is less than 1/41.1 — 0.02 S.
For a brine—filled fracture (a — 2 S/m), this upper bound on the fracture conductance results in a
maximum fracture thickness of 0.01 m for a convergent Neumann series. For fractures permeated
with higher conductivity materials, the maximum thickness decreases accordingly. Furthermore,
we note that convergence of the Neumann series Eq (3.11) will require many terms if the spectral
radius is close to unity and thus a simple one-term approximation N = 1 is likely to be
numerically adequate under only the most subtle of conductivity perturbations. The problem is,
evidently, a direct consequence of the strong borehole casing signature in this dominant
eigenmode (Figure 3-8).

The severe restrictions posed above on the maximum conductance perturbation for a convergent
Neumann series are further exacerbated under a more careful analysis on the effect of mesh
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discretization. Prior results (Figure 3-4 through 3-7) were computed using a mesh discretization
where the node spacing h within the plane containing the fracture ellipses was fixed at 3 m
(Figure 3-2). In considering h values on the range 2-6 m, the maximum eigenvalue scales
approximately as 1/h (Figure 3-9). Therefore, in the limit h 0 that the discrete finite element
problem better approximates the infinite—dimensional (vector space) problem, the maximum
eigenvalue approaches infinity. In such cases, under no condition is the Neumann series
convergent — a conclusion that has serious consequences for analyses based on the presumption of
Neumann series adequacy.

One might question at this point whether the terminal conclusion of the preceding analysis
reflects some limitation of the hierarchical finite elements in the limit of h 0 rather than
electrostatic coupling between the conducting fractures and steel borehole casing. Previous
benchmarking exercises (Weiss, 2017) demonstrated agreement between the finite element
solutions and independent reference solutions, as well as internal consistency between edge, facet
and volume discretizations. However, for our main conclusion on Neumann series convergence to
hold, we must also demonstrate that our (linear, nodal) finite element solver converges as h2 in
accordance with theory. To do so we adopt the verification and validation strategies known as the
"method of manufactured solutions" (MMS) and "method of exact solutions" (MES) to analyze
the convergence behavior (Salar and Knupp, 2000; Roache, 1998).

In the general MMS, an exact solution 0* is defined a priori for the governing differential
equation — in our case, Eq (3.1) — and a right—hand—side "source is computed analytically. The
analytic source function is then used in the construction of the finite—dimensional right—hand—side
resulting from the numerical approach under consideration, which presently is the vector b in Eq
(3.7) arising from linear, nodal finite elements on a tetrahedral mesh with node spacing h. The
numerical solution x is then computed and compared with the exact solution evaluated the mesh
nodes xEXACT thus providing an error estimate as a function of h. The exercise is repeated over a
range of h to determine the convergence rate of the numerical solution and verify that it agrees
with theoretical estimates.

For the MMS problem we choose the exact solution 0* = exp [— (r/a)2] with 6= 1 S/m because
it is easily differentiable and smooth, with no singularities or discontinuities. Thus, this MMS
solution tests whether the tetrahedral discretization of Weiss (2017) finite element solver is
working as designed. The resulting (distributed) source function (6a2 — 4r2) exp [—r/a] is
substituted for V • J, and the exact solution 0* is imposed as a Dirichlet boundary condition over
the model domain —50 < x, y, z < 50 m, with the constant a equal to 20 m. An advancing front
method is used to discretize the model domain with (roughly) equidimensional tetrahedral
elements of edge length h. Numerical experiments with h refinement over the range 2 to 10 m
demonstrate a h2 convergence rate in the residual error in accordance with theoretical estimates
for linear finite elements (Figure 3-10).

Whereas the MMS result just described lends additional confidence to the results of the our finite
element solver in the limit of decreasing h, the distributed source term is not representative of
actual sources deployed in geophysical surveys. Hence, we also seek a convergence/verification
test using an exact solution derived from a more geophysically relevant source. This is the MES
method: Define the source term V • J, and solve Eq (3.1) for the exact solution ØEXACT under
some relevant/convenient boundary conditions, then compare — as before — the numerical solution
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to the exact solution over a range of h values. To keep things simple in the first of our MES
analyses (MES1), V • J, is a Dirac delta function located at the origin (thus representing the
grounded end of an insulated wire carrying an implied 1 A current) and a = 1 S/m everywhere.
That is, the exact solution 1/4zr is that for unit—amplitude source electrode buried deep within
the earth, sufficiently far away from the air/earth interface that the interface can be safely ignored,
where r is the distance to the source electrode. Numerically, the MES1 problem is solved over the
same 100 x 100 x 100 m domain as the MMS problem described above with the exact solution
imposed as a Dirichlet boundary condition. Discretization of the domain is done in two steps to
ensure that a mesh node resides at the origin and some degree of mesh symmetry persists as h is
refined. First, the domain is sliced along the x, y, z = 0 planes. Second, each of the resulting 8
subdomains are populated with tetrahedra having edge length h, sharing nodes, edges and faces
across the subdomain boundaries. Although an algebraically simple analytic solution, the
singularity at the origin and our insistence of putting a mesh node there guarantees that the norm
of residual vector between numerical and exact solutions will always be infinite. Hence, we
compute residual norms on 2 < h < 10 as before, but only for those nodes greater than 10 m from
the origin. At the coarsest discretization h = 10 m, this guarantees that the singularity and the
error in its immediate vicinity does not affect the overall residual error estimate. As in the MMS
case above, h2 convergence of the residual norm is observed, demonstrating that the quixotic
efforts our finite element solver to replicate singularities in the exact solution are spatially
localized over a distance of a few h's (Figure 3-10).

Lastly, we construct a second exact solution test (MES2) to analyze how the hierarchical material
representation (Weiss, 2017) affects the convergence of the global error estimate under h
refinement. After all, we use the hierarchical representation to explicitly examine the Neumann
series expansion described earlier in the Theory section, and the 1/h dependence on the maximum
eigenvalue estimate (Figure 3-9) has serious consequences for the usefulness of Neumann series
expansions in geophysical exploration settings like that considered here. Through the MMS and
MES1 analyses, we've demonstrated that h —> 0 mesh refinement yields the expected theoretical
convergence h2 for smooth solutions over linear tetrahedral elements, even when in cases when
the exact solution is singular. As a final test, consider a model of a vertically oriented, thin,
conducting sheet, embedded in a less conducting halfspace. Geologically, this could represent a
vertical fault plane or perhaps a thin dike. The electrostatic potential in the Earth region for a 1 A
Dirac delta source located at the origin (on the air/earth interface) and an outcropping,
semi—infinite vertical slab with boundaries x = s > 0 and x=s+b > s can be "tediously" derived
by the method of images (Telford et al., 1990). Letting the earth and slab conductivity be given by

al and a2, respectively, the solution in region —.0 < x < s is given as:

in s<x<s+b as,
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and in region x > s b as,

1 k2m
D (3.16)(x, y, z) =

27rcri

with constants

E -
m=0 R4

A = —k(1 — k2) , B = —k(1 + k), C = 1 + k, and D = 1 — k2 (3.17)

reflection coefficient k2 = (cri — 62)/(61 + 62) and radial distances

= ,Vx2 + y2 + z2

R2 = 02s x) 2 + y2 + z2

R3 (2(m + 1)b + 2s x)2 +y2+ z2, and
(3.18)

R4 = \/(2mb x)2 + y2 + z2

Note that while there is an inverse—distance term (1/R2, 1/R3 and 1/R4) present for each of the
image points in Eq (3.14 through 3.16), those image points, respectively, lie outside the domain
where the potential is computed and thus do not introduce additional singularities beyond that due
to source — the 1/Ri term.

Recall that under the hierarchical material property representation (Weiss, 2017), a thin sheet is
assigned a finite conductance (anomalous conductivity x thickness product) whose value is
assigned to the infinitely thin facets of the tetrahedral finite element mesh. In the present MES2
example, that value is taken arbitrarily to be 10 S, with a background "host rock" conductivity
61 = 0.01 S/m. Over a model domain —100 < x, y < 100 m and —100 < z < 0 m representing the
earth region alone, the hierarchical finite element solution is compared to the exact solution Eq
(3.14 through 3.16) for the case of a very thin (but not zero) slab of thickness b = 0.1 m offset
s = 20 m from the origin (Figure 3-11). As in the MES1 example, the model domain sliced in the
x, y = 0 planes, but now with an additional slice at x = 20 m so that a vertical plane of contiguous
triangular facets is present for representing the conducting sheet. Because the model domain only
encompasses the earth region, Eq (3.14 through 3.16) are imposed as a Dirichlet boundary
condition on x, y, z = — 100 m and x, y = 100 m sides of the computational domain while a
homogeneous Neumann condition is applied to the air/earth interface, z = 0 m, to ensure current
continuity between the air and earth regions.

Numerical experiments where the norm of the residual between the (hierarchical) finite element
and the exact, Eq (3.14 through 3.16), solution is computed over the range 2 < h < 10 m show
agreement with the theoretical h2 convergence rate for linear finite element methods and
volume-based material representation (Figure 3-10). Hence, we see no evidence that the 1/h
dependence on the maximum eigenvalue (Figure 3-9) is attributable to some unforeseen and
pathological convergence behavior introduced by the hierarchical material model.

Given these findings, what are the possible paths forward for electric field modeling of mature,
developed oilfields? Clearly, there remains the question of how other series approximations
perform under circumstances similar to that considered here. These may include, for example, the
Rytov series or one of the many Neumann series variants such as extended Born approximation.
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Included in this is cross—analysis by competing 3D forward solvers and the consideration of
alternative subsurface models with varying degrees of complexity. To that end, the chapter is not
fully closed on series approximations for complicated subsurface models rich in anthropogenic
clutter, despite the discouraging results just shown for the case of a simple, single—well oilfield
model.

3.6. CONCLUSIONS

We have demonstrated through the unique capabilities of hierarchical finite element analysis the
convergence of a Neumann series expansion of the electrostatic field in an idealized oilfield
setting consisting of a modest set of mildly conducting fractures surrounding an idealized steel
casing. The Neumann series is computed about these mild fracture perturbations alone, with the
strong conductivity of the steel casing embedded in the linear operator on which the Neumann
series is built. As a complementary approach to prior work where this linear operator is derived
from integral equation methods, we derive a linear operator from the differential form of the
governing Maxwell equations and show that its spectral radius varies as the inverse of mesh size
— 1 /h, suggesting that the Neumann series is intrinsically divergent for all perturbation in fracture
conductivity in continuous limit h O. The hierarchical finite element method upon which this
analysis would otherwise not have been possible is shown to possess h2 convergence in solution
accuracy, consistent with theoretical estimates for traditional nodal final finite elements, and thus
ruled out as an unwelcome agent to the Neumann series' inescapable divergence. In the case of
oilfield characterization in the presence of steel infrastructure, fracture diagnoses methods reliant
on Neumann series analysis or some abbreviated version therein are thereby suspect owing to the
strong galvanic coupling between the fracture and infrastructure. Conditions under which there is
sufficient decoupling between the fracture and infrastructure are surely complex and depending
upon fracture/infrastructure separation and geometrical constraints, and it is yet to be determined
whether useful "rules of thumb" are ultimately available. Until that time, analysis such as that
presented here — convergence studies, eigenspectrum estimation, verification & validation — are
useful tools for determining whether a particular manifestation of the Neumann series approach is
numerically defensible.
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Figure 3-6. True scattered potential computed by direct differ-
encing x — xo (black circles) and by reconstruction V/_i x, +
x(N+1) ,N = 0,1,2,3 (red) for fractures with total conductance se =
1.0 S located at measured depth 1200 m and excited by a 1 A
source at the well head. Residuals for Neumann series expan-
sion of order i — 1 are shown by x(i) and computed directly by
Eq (9). Earth model is a 0.01 S/m halfspace, with a 5 x 104 S.m
steel casing extending 1 km down from the well head and then 1
km horizontally (Weiss, 2017). In all cases, the relative error be-
tween the reconstructed solution and direct differencing is less
than 0.006% along the borehole casing.
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Figure 3-8. Following the cutaway view in Figure 3-2, represen-
tative isosurfaces (red, positive; amber, negative) for the eigen-
mode corresponding to the maximum eigenvalue for a Neumann
series expansion around perturbations in fracture conductivity
alone. Note the strong signature of the steel casing (red) which
is not part of the conductivity perturbation in the fractures, but
is nonetheless strongly coupled to it.
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Electrostatic Potential and Finite Element Mesh

Figure 3-11. Finite element solution (color scale) and mesh for
problem MES2, the electrostatic response due to a single pole
on the air earth interface and adjacent to an infinitesimally thin
vertical conducting sheet. Earth conductivity is 0.01 S/m and
sheet conductance is 10 S. Exact solution is that from a 0.1
m sheet of 100 S/m conductivity, which yields the equivalent
transverse conductance value 10 S. Heavy lines show block
boundaries within the model domain, which themselves are dis-
cretized with uniform tetrahedra of edge length h.
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4. APPLICATION OF EM METHODS
FOR INFRASTRUCTURE
EXPLOITATION

4.1. SUMMARY

A hierarchical model of material electrical properties representing volume—, face— and
edge—based distributions is presented for the purpose of efficient representation of strong, but
volumetrically insignificant, conductors in finite element modeling. The model is currently
implemented in the context of three—dimensional (3D) DC resistivity simulations, but appears
suitable for broadband electromagnetics as well. In contrast to the strategy of fine—scale
discretization of thin or slender conductors by brute force with potentially millions of tiny
tetrahedra, the hierarchical model collapses these small conductors onto infinitesimally thin faces
and edges which reside on the interface between larger tetrahedra, thus avoiding excessive
discretization and computational burden. The effect of this hierarchical model on the structure of
the finite element formulation in the DC case is to augment the 3D stiffness matrix with the
addition of a small set of 2D and and 1D element stiffness matrices corresponding to those facets
and edges where the thin conductors reside. Thus, the added computational cost is minimal over
that of the problem without the conductors. Benchmark solutions compare favorably with
independent reference solutions and there is consistency between the volume—, face— and
edge—based model parameters in the limit of extreme volume discretization. As an example
application problem, results are presented on the DC response of an electrified underground
railway line and show that the proposed model can reduce the resource footprint of the finite
element calculation by several orders of magnitude.

4.2. INTRODUCTION

A widely recognized problem in electrical and electromagnetic studies of the subsurface is the
efficient representation of anthropogenic clutter in numerical modeling. The need arises from a
variety of exploration scenarios, ranging from ones where the clutter (e.g. pipes, landmines,
unexploded ordnance) is the target of interest to cases where the scattered field from the clutter
compromises the signal quality from some other target. Regardless, the numerical challenge in
modeling strong conductors which are small in comparison to the scale of the geology or the
geophysical survey arises from both the high conductivity contrast between the clutter and the
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surrounding geology, and, the very fine discretization required to numerically capture their shape
and size in a large computational domain. In the context of finite element modeling, small strong
conductors of arbitrary shape can be reasonably approximated by many small tetrahedral
elements - which, in the case of metal pipes, for example, may represent volumes on order of a
cubic centimeter or less, which are then embedded in a mesh representing a volume of several
cubic kilometers. Parallelized finite element, volume and difference methods have all been
implemented in the limit of extreme discretization to reduce the computational cost of the
broadband electromagnetic problem Commer et al. (2015); Um et al. (2015); Haber et al. (2016),
resulting in run times on the order of several minutes to hours. Further reduction in runtime can
be achieved by "upsizing" the conductive features to some length scale that is physically
unrealistic, but whose adverse effects on numerical solution accuracy are acceptable Haber et al.
(2016); Weiss et al. (2016).

The concept of a hierarchical material properties model for finite element analysis on an
unstructured tetrahedral grid is motivated by the Cartesian resistor network of Yang et al. (2016),
which, in turn, was based on the earlier work of Newmark et al. (1999) and Daily et al. (2004). In
the resistor network concept, as cited here, a Cartesian lattice is defined with cell—by—cell
variability in electrical conductivity. On each of the edges of the Cartesian grid, the two Kirchhoff
circuit laws are enforced assuming a volume—averaged current surrounding the edge. This leads
to a linear system of equations that can be solved for the electric potential on each node of the
lattice. Yang et al. (2016) updated the resistor network to include face— and edge—based electrical
properties on the Cartesian and recognize the similarity in mathematical form between the
Kirchhoff linear system and that derived from discretization of the governing Poisson equation,
but pointed out a key difference: face— and edge—based material properties could not be
accommodated by the usual finite element method for the 3D DC resistivity problem. The
hierarchical material properties model described here makes that previously unrecognized
connection between finite element analysis and the resistor network formulation, with all the
benefits of finite element analysis as a result — namely, a flexible discretization with elements
geometrically conformable to complex conductivity distributions, including that of the thin and
sinuous conductors lying at interstices between elements.

4.3. THEORY

The central concept of the hierarchical conductivity model is to associate electrical conductivity
with three different geometric structures — volumes, facets and edges — in such a way that when
used in a finite element discretization, the facet and edge conductivities remain local to facets and
edges in the final global system of linear equations. Doing so addresses the central concern raised
by Yang et al. (2016). Letting the electrical conductivity be represented by the rank-2 tensor a,
one mathematical structure that achieves this goal is the following:

NV NF NE

a(x) = E aelyev (X) E se1K (X) E teiK 4),
e=1 e=1 e=1
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with hierarchical, rank-2 basis functions

and

1 if x e volume evf ev .7c) diag(1, 1, 1)
0 otherwise

(x) = diag (0, 1, 1)e

(x) = diag (1, 0, 0)e
0

if x E facet e

otherwise

if x E edge e

otherwise •

(4.2)

(4.3)

(4.4)

In Eq (4.2-4.4) the diagonal rank-2 tensor is subscripted by e to indicate representation in the
local eve2-e3 frame (Figure 4-1). For facets, we take the e2 and e3 directions to lie in the plane of
the eth facet, where for edges, we take the el direction to lie parallel to the eth edge. Note that
volume integration of Eq (4.1) with the definitions laid out in Eq (4.2-4.4) takes on the SI units
[S•m2]. Hence, the SI units of coefficients se and te must be [S] and [S•m], respectively. That is, se
represents the conductivity—thickness product of facet e, and te represents the product of
conductivity and cross-sectional area for edge e.

TUNNEL ENTRANCE AND EARTH MODEL

Figure 4-1. Entrance to an underground tunned complex into the
side of an 11° slope. Rails (heavy lines) are energized at the
entrance by a 1A point source.

Substitution of Eq (4.1) into the governing Poisson equation V • (a • Vu) = f leads to the weak
variational form of the DC resistivity problem: find u such that a(v, u) = (v, f) for all test
functions v where

a(v,u) = f vv • (a • Vu) dx3 . (4.5)
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It is clear that tensors diag(0, 1, 1), and diag(1, 0,0), collapse the volume integration in Eq (4.5)
into surface and line integrals. Hence, the resulting stiffness matrix K in the finite element system
of linear equations

Ku = b, (4.6)

is a sum of 3D, 2D and 1D element stiffness matrices

Nv NE

K = ceKe4 + seKe3 + teKe2, (4.7)
e=1 e=1 e=1

and the locality concerns raised by Yang et al. (2016) are now resolved.

4.4. BENCHMARKING AND EXAMPLE

Previous benchmarking of the Weiss et al. (2016) strictly volume—based DC resistivity modeling
software showed favorable agreement with the Johnson et al. (1987) analytic solution for a finite
vertical cylinder in a halfspace. Extending this benchmark exercise to now include edge—based
conductivity elements in Eq (4.1), finite element solutions for an infinitely thin conductor with
conductivity—area product t = 104 S •ni are compared against analytic solutions for a conductor of
radius 0.001 m and infinite conductivity (Figure 4-1, inset). In the finite element simulation, this t
value is equivalent to conductivity value — 3.3 x 109 S/m, a reasonable value in the asymptotic
limit to infinite conductivity. In this limit, the electric potential on the borehole cylinder is nearly
independent of position on the borehole itself. As such, the borehole potential is analyzed as
function of source—borehole offset and excellent agreement is found between analytic and finite
element solutions (Figure 4-1).

To complete the benchmarking exercise, results from the (previously validated) volume—based
model representation are compared against those for facet—based conductivities, the middle term
in Eq (4.1). Out of simplicity, the test model consists of a 35 m radius circular disk, 1 m thick,
buried horizontally 10 beneath the air/Earth interface (Figure 4-2, inset). Discretizing the disk
with small tetrahedra (edge length roughly 1 m), the volume—based finite element results are
compared with those where the disk is simply represented by facets with transverse conductance
Se = a S/m x 1 m. Again, the agreement is excellent (Figure 4-2) over a range of disk
conductivities and thus, it would appear that the volume, facet and edge representations of
electrical conductivity in Eq (4.1) are self consistent.

It's worth pointing out that benchmarking results shown here are for embedded conductors. This
is encouraging for the metal clutter problem, but what about embedded resistors? This remains an
open research question, but it's worth noting the following example in DC resistivity modelling.
Replacing the conducting disk in Figure (4-2) with a perfectly resistive one results in
equipotential lines normal to the disk face, with a strong potential gradient vertically through the
disk. Hence, in the limit of an infinitely thin disk, the potential is discontinuous and thereby
incompatible the vector space of continuous functions from which the finite element solution u is
drawn. One possible workaround is to introduce a "tear in the finite element mesh whereby a
surface is twice discretized — once with facets for edges on one side of the tear, and again with
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Figure 4-2. Plan view of tunnel complex and steel rails in Figure 4-1.

another set of facets for the other side — with homogeneous Neumann boundary conditions
applied to each side. Such scheme has shown favorable results Weiss (2017).

As a final example, the DC response of an underground tunnel complex is presented, on the floor
of which lies a pair of 2 km long railway rails energized by 1 A grounded source (Figure 4-1).
Buried 1 km deep into the side of 11 degree slope, the tunnel complex presents an interesting
challenge for modeling for several reasons. First is the fact standard light—freight rails have a
cross sectional area of approximately 60 cm2. A single rail 2 km in length thus occupies a volume
12 m3 of steel, which would require roughly 100 million tetrahedra of 1 cm edge length to
discretize for a finite element mesh. In the edge—based discretization, the rails are approximated
by a set of edges, each 5 m in length, resulting in only NE = 800 additional terms in the
summation Eq (4.1). One small challenge presented by the use of edge—based elements is that it is
no longer appropriate impose a homogeneous Neumann boundary condition on the air/Earth
interface at those edges where the strong conductor lies. Because the conductor is zero thickness,
such a boundary condition is in conflict continuity of current at the Earth/conductor interface.
Hence, an air layer is added to the model, in this case roughly doubling the number of elements in
the finite element mesh to approximately 300k, within which there are only 50k nodes. The finite
element system of equations Eq (4.6) is solved iteratively using a Jacobi—scaled conjugate
gradients in 32 s on a 3.1 GHz MacBook (Figure 4-3).

Oblique cutaway view of the electric potential in the 3D finite element simulation of the tunnel
and rail complex described here. A vertical slice through the 3D Earth model is located on the
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Figure 4-3. Discretized tunnels and rails in Figure 4-1. Rails are
represented by finite element edges with 5 m nodal spacing,
separated by 1.4 m and corresponding to light freight capacity
(49.6 kg/m) with steel conductivity 7 x 106 S/m. Local mesh re-
finement near the tunnel entrance (adit) yields a mesh spacing
of approximately 1 m.

left/right symmetry plane of the complex, on which the potential is shown (color scale) to
illustrate how the potential on the rails manifests as a signal on Earth's surface. To the left of the
vertical slice is the potential on the AIR/EARTH interface where pairs of surface electrodes can
be deployed to measure potential differences as shown by variation in the color hue. To the right
is the potential on a level surface cut into the slope on which the rail and tunnel complex lie.
Whereas much of this area is inaccessible to direct measurement, except within the tunnel itself, it
is useful to see the extent to which the rail is energized and how its elevated potential extends
laterally within the subsurface.

4.5. CONCLUSIONS

The benchmarking examples shown here demonstrate that hierarchical conductivity model Eq
(4.1) is both self—consistent and generates results that agree with independent reference solutions
when the facets and edges are relatively conductive with respect to the volume elements.
However, it's also been shown (Weiss, 2017) that the jump discontinuity in electric potential
across the face of a thin resistive disk requires more of the finite element formulation than the
modified model Eq (4.1). When used in the context of DC resistivity simulations, the conductivity
model must be accompanied by a suitable finite element vector space— one which admits step
discontinuities — for the evaluation of arbitrary conductivity structure. Extending the concept of
the hierarchical material properties model to three—dimensional, time—dependent
electromagnetics (either frequency domain or generalized time domain) is an open question best
pursued, for several reasons, in future research. For example, the frequency domain problem has
been cast is all varieties of magnetic—, electric— and potential—field formulations, and it remains to
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Figure 4-4. Electric field on the underground rails within the tun-
nel complex described in Figures 4-1 and 4-2. Source is a 1 A
single pole electrode located at the tunnel entrance.

be understood how the facet— and edge—based conductivities may frustrate the numerical solution,
as resistors do in DC, without additional mesh modification. In the context of near surface
geophysics, the rail and tunnel example presented here suggests investigating whether magnetic
permeability can also be distributed by an analogous hierarchical model, thereby allowing for
economical modeling of highly conductive and permeable steel. In principle, it appears that the
mathematical structure of Eq (4.1) would admit such an idea, but at first blush, its implementation
is problematic. That is, in the frequency domain electric field formulation, the governing equation
in a source—free region is

V x [/.1-1 • (V x E)] ia) (a • E) = 0 (4.8)

and it's clear that although high—conductivity facets and edges are well represented by their
corresponding se and te coefficients in a, a high—permeability edge or facet in µ-1 results in
analogous coefficients that, in the limit of infinite permeability, are zero and hence safely ignored.
Recasting the governing Maxwell equations in terms of a second—order magnetic field
formulation does not resolve the conflict, but rather shifts the problem from the µ-1 term to the
corresponding a-1 term nested between V x terms. One possible workaround is to admit se and te
coefficients with negative values, thus making a weighted sum (for unit consistency) of cre, se and
te representative of the facet and edge conductance. However, doing so would still require
compatibility with the underlying discretization, which in the case of DC resistivity, necessitated
the introduction of tears in the finite element mesh. Lastly, it's conceivable that use of the
hierarchical model, Eq (4.1), for conductivity, permeability, or both, may require re—evaluation of
the time—stepping requirements for transient calculations since the facet and edge structures
contained in the model are infinitesimally thin. Of course, such considerations could be avoided
(or at least deferred to a later time) by working first in the frequency domain, followed by Fourier
transform.
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Figure 4-5. Electric potential (voltage) on the rails in the tunnel
complex described in Figures 4-1 and 4-2. Source is a 1 A sin-
gle pole electrode located at the tunnel entrance. Inspection of
the potentials shows that there is continuity, as expected, at the
junction points where the rails curve into the complex. Also ev-
ident is a measureable potential difference between rails in ad-
dition to the potential difference along the individual rails them-
selves. These effects are due to the finite conductivity of the
rails and the current leakage from the rails into the surrounding
geology.
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Figure 4-6. Partial cutaway view of the finite elemement mesh
and electric potential for the tunnel and rail complex shown in
Figures 4-1 and 4-2. Source is a 1 A single pole electrode lo-
cated at the tunnel entrance. Mesh consists of 1.8M tetrahedral
elements with 310k nodes. Rails were discretized with only 499
edge-based conductivity elements. Solution time was N 4 min
with preconditioned conjugate gradients to an optimal solution
with normalized target residual of 10-12.
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5. FINITE ELEMENT ANALYSIS FOR
OILFIELD AWARENESS

5.1. SUMMARY

The recurring problem in electrical and electromagnetic modeling of anthropogenically impacted
geologic settings is the need for efficient representation of strong, thin, arbitrarily oriented
electrical conductors, such as metal pipes or conductive fractures. The difficulty arises from
discretization with roughly equidimensional elements of the governing Maxwell equations over
these volumetrically insignificant regions; which by virtue of conductors' thinness, can easily
number in the 100's of millions for even simple models. To address this problem, a novel
hierarchical electrical model is proposed for unstructured tetrahedral finite element meshes,
where the usual volume—based conductivity in tetrahedra is augmented by facet— and edge—based
conductivity on the infinitesimally thin regions between elements. This allows a slender borehole
casing of arbitrary shape to be approximated by a set of connected edges within the mesh, and on
which a conductivity—area product is explicitly defined. Benchmark testing of the direct current
(DC) resistivity problem shows excellent agreement between the facet/edge representations and
independent analytic solutions. As a practical case, the metallic infrastructure of a mature oilfield
in the Kern River Formation is modeled. The oilfield comprises roughly 2 km of surface pipeline
and 122 vertical, steel—cased wells, each extending to a depth of 300 m. Numerical results
demonstrate strong coupling between surface and downhole conductors and reveal a complex
circuit of current flow within the (finite conductivity) steel. This would be difficult to quantify
using alternative, approximate methods for accommodating the approximately 30 km of steel
casing and surface pipe combined.

5.2. INTRODUCTION

It has long been recognized in electromagnetic (EM) geophysics that over the field scale,
volumetrically insignificant, but strongly conducting metallic features such as pipes, cables and
rails can have a huge effect on measured signals, covering large distances and having magnitudes
comparable to, if not larger than, those from geologic targets of interest (Fitterman, 1989;
Fitterman et al., 1990). However, generalized discretization of such metal for numerical modeling
is computationally burdensome if equidimensional elements — preferable for numerical
tractability — are used because many small elements are necessary to fill the conductor
volumetrically. For example, to discretize 500 m of standard well casing (0.1 m diameter, 0.025 m
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wall thickness) would require roughly 3.7 x 106 equidimensional tetrahedra. Over a 1 km3
volume discretized with 10 m edge length, the borehole would consume nearly 30% of the total
tetrahedra, but only represent 7 x 10-7% of the volume. This results in an extreme concentration
of computational resources in a region potentially far from observation points, and also severely
inflates the overall size of the numerical problem.

Presented with such a problem, one approach is to embrace the full computational burden of the
problem and develop algorithms for massively parallel architectures (Commer et al., 2015; Um
et al., 2015) or employ multigrid methods (Haber et al., 2016). Another approach is to employ
analytic or integral equation methods for computing scattered electric and electromagnetic fields
from some external source (Wait, 1952; Hohmann, 1971; Parry and Ward, 1971; Howard, 1972;
Wait, 1957; Wait and Williams, 1985; Williams and Wait, 1985; Johnson et al., 1987; Schenkel
and Morrison, 1990; Patzer et al., 2017) and use these fields as an equivalent sourcing term.
However, with the exception of Qian and Boerner (1995), these formulae are typically for straight
boreholes in uniform or layered earth.

Yet another approach is to expand the Cartesian resistor network model (Newmark et al., 1999;
Daily et al., 2004) by including conductivity elements associated with the faces and edges of the
Cartesian cells. Application of the Kirchhoff circuit laws at circuit junctions (nodes of Cartesian
lattice) results in a linear system whose solution yields the electric scalar potential (Yang et al.,
2016). Although the linear system bears some resemblance, in the matrix operator sense, to the
governing equation for electrostatics, it was not recognized how the connection could be made.
Weiss (2017) concieved the hierarchical volume—facet—edge conductivity concept, and
generalized it to the finite element formulation of the electrostatics problem. Weiss demonstrated
the aforementioned connection and provided framework for representing the facet and edge
conductivities on an unstructured grid. The conducting facets and edges can be arbitrarily sized,
connected and oriented, thereby allowing efficient representation undulating conductive sheets or
circuitous, bending linear conductors.

In this study, the Weiss (2017) finite element formulation is applied to DC modeling in a mature
oil field, where there is abundant surface pipeline and numerous, closely spaced wells. First, a
brief review of the hierarchical finite elements is provided, along with one benchmark example
from Weiss (2017). Next, analysis of a model based on the Kern River Formation near
Bakersfield, California, is presented.

5.3. THEORY

The mathematical theory of DC resistivity modeling in geophysics is well established (Telford
et al., 1990). Therefore, the theoretical development begins with the governing Poisson
equation:

—V • (a • Vu) = f, (5.1)

where u is the electric scalar potential, f is the divergence of the electric current density source,
and a is the rank-2 tensor of electrical conductivity. By allowing the principal axes of the
conductivity tensor to vary arbitrarily, element—by—element, the conductivity can be decomposed
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into parts. These parts are associated with Nv tetrahedra (the usual method of discretization) plus
two additional terms associated with some subset of NF facets and NE edges within the tetrahedral
mesh (Weiss, 2017). That is:

Nv NF NE

a (x) = E (4;(•x) + E sevf(x.) + E teve(x), (5.2)
e=1

with hierarchical, rank-2 basis functions.

and

e=1 e=1

Vey (x) = diag ( 1 , 1, 1) 10

VieF (x) = diag(0, 1, 1)e oi

(x) = diag(1,0,0)e 1
0

if x E volume e

otherwise

if x E facet e

otherwise

if x E edge e

otherwise •

(5.3)

(5.4)

(5.5)

In Eq (5.2) through (5.4), the rank-2 tensor diag (.) e given in terms a local reference frame e for
individual tetrahedra, facets, and edges (Figure 5-1). The result of this decomposition is the
N x N finite element system of linear equations:

Ku = b, (5.6)

is that the global stiffness matrix is a sum of element—based volume, facet and edge stiffness
matrices

Nv NF NE

K = e4 e3 aeK + seK + teKe2,
e=1 e=1 e=1

(5.7)

built by integration of Vv • (a • Vu) over volumes, facets, and edges, respectively; where v is the
test function introduced in solving the variation problem, which derives from Eq (5.1). N is the
number of nodes in the discretization. Because the NF facets and NE edges in Eq (5.7) already
reside inside the mesh of Nv tetrahedra, including the second and third summations in Eq (5.7)
does not increase the size of the N x N coefficient matrix K.

The linear system in Eq (5.6) is solved here using conjugate gradients with Jacobi (diagonal)
preconditioning. Furthermore, the computational burden is minimized by computing the K matrix
elements "on the fly" as necessary in each iteration of the conjugate gradient algorithm (Weiss,
2001), thus eliminating storage cost for K. Out of conservatism, the iterative sequence is initiated
with the zero vector and terminated once the residual £2 norm is decreased by a factor of 10-12
over its starting value.

Results of the hierarchical conductivity model, Eq (5.2), have been benchmarked against
independent analytic solutions and checked for asymptotic agreement with thin conductors of
finite thickness (Weiss, 2017). One such example is a comparison between analytic and
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volume

ue diag(1, 1, 1)

facet

se diag(0, 1, 1),
el

edge

Figure 5-1. Hierarchy of volumes (left), facets (middle) and
edges (right) on which the conductivity model in equation 3 is
defined. For facets and edges, the el direction in the local princi-
pal axis references frame oriented normal to the facet and along
the edge, respectively.

edge-based finite element solutions of "casing voltage" for a perfectly conducting, thin (1 mm
diameter) vertical cylindrical conductor (Figure 5-2). The potential on the surface of a perfect
conductor is everywhere uniform, and it is this constant which is compared (see Figure 5-2, inset,
for problem geometry). For the finite element calculation, a value of te = 104 S•m, was used,
corresponding to a conductivity value — 3.3 x 109 S/m, which is a reasonable approximation for a
perfect conductor. Representing the cylinder by a set of continuous (NE = 100) 1 m segments
yielded not only acceptable agreement with the (Johnson et al., 1987) solution, but also a
considerable savings in mesh elements had we instead chosen to discretize the 100 m cylinder
with tetrahedra 1 mm on a side.

5.4. OILFIELD EXAMPLE

As practical example, we examine a representative mature oilfield, taken here to be the Kern
River Formation, north of Bakersfield, California. At this site, there is an abundance of metallic
infrastructure that would frustrate traditional DC resistivity analysis of the subsurface (Figure
5-3). The particular model consists of nearly 2 km of surface pipeline and 122 steel cased wells.
Public satellite imagery was hand digitized for well and surface pipe locations, with a resolution
of approximately 0.1 m. For simplicity, clusters of adjacent, parallel surface pipelines were
coalesced into a single conducting line. Absent specific information about the wells in the area,
well depths are randomly distributed between 200 and 300 m into the subsurface. Topography
and the the presence of four large storage tanks is ignored in this example.

A tetrahedral mesh was generated with the TriMesh algorithm in Cubit (cubit.sandia.gov) with
mesh edges conformal to surface pipes and wellbore casings. Node spacing on wells is 10 m (one
casing section), whereas it is 5 m for the surface pipes. Overall the oilfield infrastructure is
embedded in a 10 x 10 x 10 km block with air conductivity (upper half of the block) at 10-8 S/m
and earth conductivity (lower half) 10-3 S/m, with node spacing on the order of 100 m away from
the oilfield. Pipelines and well casings were assigned values te = 5.5 x 104 S-m, which is
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Figure 5-2. Comparison between finite element (symbols) and
analytic (line) solutions for buried, thin, and perfectly conduct-
ing cylinder (see inset for geometry). Plotted is the electric
scalar potential Vd on the cylinder due to a 1 A point current
source located a distance L away from the top end of the con-
ductor. Analytic solutions are given for a cylinder radius of
0.001 m; a dimension well within the asymptotic limit for an in-
finitesimally thin conductor.

consistent with 0.2 m diameter steel pipe with 0.025 m wall thickness. The overall mesh size is
356k nodes. A hypothetical 1 A single pole source is located in the lower right corner of the
survey area (Figure 5-3).

Analysis of the complete oilfield infrastructure (pipes and boreholes) shows some interesting
features. For example, the surface pipe's effects of on the current distribution in the well cases are
severe. The absence of surface pipelines results in downgoing electric currents in all of the wells
(Figure 5-4, bottom). However, the presence of surface pipelines not only affects the vertical
current magnitude, but also affects its direction. As a result, many of the wells sustain a steady
upgoing current (Figure 5-4, top), with a magnitude of several 10's of mA.

Furthermore, analysis of the surface pipeline (Figure 5-5) shows a complex distribution of electric
current, originating from the lower right (near the source, but not on it) and winding its way
through the various loops and branches present in the pipeline circuit. Notable features include
current leakage into the geologic formation, along the peripheral spurs of the main circuit loop.
Additionally, maximum current density is located away from the point nearest the actual current
injection point in the lower right corner of the survey area. The effect of the well casings on
surface pipes is mild, with small differences in amplitude and direction noticeable in the
lower-middle section of the survey area.
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Kern River Formation Site
0.7 km2 area + 122 wells + —2 km surface pipes

Figure 5-3. Aerial photo of a representative patch of the Kern
River Formation oilfield north of Bakersfield, California, where
metallic infrastructure in the form of well casings, surface de-
livery pipes and storage tanks are present. For simulation pur-
poses, a 1 A single pole current source is located in the lower
right corner of the region (star). Black lines represent surface
pipes in the model; black dots represent the wells. The four
storage tanks are not included.

Finally, electric field magnitudes are observed on the order of 0.1 — 1 rnV/m over the survey area
(Figure 5-6), with enhancernent in overall amplitude over that expected by sirnple geometric
spreading. The effect of individual wells and the elevated electric field in the earth region nearest
the 1 A point current source (Figure 5-6, top) is clearly visible. Distribution of the electric field
vector is expectedly complicated (Figure 5-6, bottom), with demonstrable current leakage both in
to and out of the formation, normal to the sides of the surface pipes.

5.5. CONCLUSIONS

This work presents a novel finite element method for the economical representation of thin, finite
conductors in solutions to the electrostatic DC resistivity problem. The method shows favorable
agreement with independent benchmark solutions. It was applied to a realistic mature oilfield
scenario consisting of multiple wells and surface pipeline. Results show that the fully coupled

89



system of strong conductors severely distort the electric field in ways difficult to predict
otherwise.

Results demonstrate that the electric current density in the surface pipeline is not strongest in the
region closest to the actual grounded source. Rather, the current density diverges in the pipeline at
this location and becomes stronger further away along the pipeline circuit. The current density
magnitude in the pipeline is on the order of l Os of mA/m2, which is a measurable quantity that
can be used for further validation.

It is possible the hierarchical finite element formulation in Eq (5.2) may also be applied to the
electromagentic problem, thus enabling its use in either frequency— or time—domain analysis.
Similarly, the magnetic permeability and electric permittivity (when appropriate) may also be
defined on the same hierarchy, although further analysis is necessary to ensure compatibility
between the finite element vector space and the fields generated by such features.
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6. THE ELECTROSTATIC RESPONSE
OF FRACTURED MEDIA

6.1. SUMMARY

Determination of the geometrical properties of fractures plays a critical role in many engineering
problems to assess the current hydrological and mechanical states of geological media and to
predict their future states. However, numerical modeling of geoelectrical responses in realistic
fractured media has been challenging due to the explosive computational cost imposed by the
explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff
between computational efficiency and geologic realism. Here, we use the hierarchical finite
element method (Weiss, 2017) to model the electrostatic response of realistically complex 3D
conductive fracture networks with minimal computational cost. This finite element approach
utilizes a novel parameterization of electrical conductivity in 3D conducting media that allows
assignment of electrical properties at each hierarchical component of a finite volumetric element
(1D edges, 2D facets and 3D tetrahedra) within an unstructured tetrahedra mesh. By employing
this hierarchical material model concept in the finite element analysis, 3D fractures can be
explicitly represented by connected facet elements or linear geologic features as well as
infrastructures such as borehole casings, rails, pipes can be explicitly represented in form of
connected edges in finite element mesh, and therefore the need of mesh refinement due to
volumetrically insignificant structures can be drastically reduced. In this study,
stochastically-generated, complex 3D fracture network models are considered to better
understand the relationship between the heterogeneity of fracture network and the resulting DC
resistivity responses. We mainly focus on the effects of fracture length and aperture distributions
on the azimuthal variations in DC resistivity. Our numerical results indicate that conductive
fracture networks with high network connectivity result in anomalously low apparent resistivity
values with strong azimuthal dependence in comparison with networks with low network
connectivity. Moreover, our results show that while the fracture size-aperture correlation has a
strong influence on DC resistivity responses when the fracture network is well connected, the
influence of aperture is marginal for fracture networks with poor network connectivity.

6.2. INTRODUCTION

Fractures are pathways where fluids migrate and transport, displaying scale-variant heterogeneity
from fracture to network scale. The complex distribution and organization of fractures together
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with hydraulic properties of the surrounding medium control the level of heterogeneity of flow
patterns (Tsang and Neretnieks, 1998; de Dreuzy et al., 2001) as well as heterogeneity of stress
fields (Pollard and Segall, 1987). Determining and monitoring the geometric properties of
fractured media is critical information for rock mechanical and hydraulic behaviors in many
engineering applications such as economic resource extraction, geologic isolation of nuclear
wastes or dissolved CO2 (Uchida et al., 1994; Tsang et al., 2015,?), geothermal reservoir
enhancement (e.g. Legarth et al., 2005) and groundwater and solute management (Bear et al.,
2012).

Many observational studies have demonstrated the direct current (DC) resistivity method as a
useful geophysical tool to infer information regarding geometrical characteristics of fractured
media (e.g. Robinson et al., 2015). Moreover, elongated resistivity anomalies over fractured
media have been related to anisotropy and considered as an indicator of the strike direction of
fractures (e.g. Taylor and HFleming, 1988; Lane et al., 1995; Busby, 2000). To clarify the
relationship between electrical resistivity responses and fracture properties, numerous numerical
approaches have been considered. While the electrical resistivity problem can be
straightforwardly modeled for fracture media at the bulk anisotropic limit (e.g. Li and Spitzer,
2002; Shen et al., 2009); given a complex discrete fracture media, numerical modeling with
classical finite methods (finite element, finite volume, finite difference) becomes computationally
challenging. The challenge arises from the explosive computational cost caused by the explicit
discretizations of the volumetrically insignificant structures that produce far-reaching responses
(geologic details such as fractures) over the scale of volume of interest. The problem of how best
to simulate models with multi-scale heterogeneity by considering the accuracy, the realism and
the computational cost of a given model has become a focus for a long time in both electric and
electromagnetic research. Proposed solutions to this problem include parallelizing the
computations for the fine-scale mesh (Commer et al., 2015; Hoversten et al., 2015; Um et al.,
2015) or exaggerating the size of structure (Haber et al., 2016). Also, the equivalent resistor
network approach provides an economical way to represent conductive fractures by facet and
edges in Cartesian meshes (Yang et al., 2016). Another proposed approach, called discontinuous
Galerkin frequency-domain method, incorporates conductive fractures into modeling by
considering subdomains and imposing impedance transition boundary condition at the surfaces
that correspond to fractures (Sun et al., 2017).

The electrostatic problem we examine here is analogous to the steady state Darcy flow problem
long studied by hydrogeophysicists, for which various numerical strategies have been also
developed to make the multi-scale problem computationally tractable. One strategy is the
"Discrete Fracture Network" method, whereby fluid flow is restricted to the connected channels
within fracture network and fluid exchange is neglected between the fractures and the rock matrix
based on the assumption of the impermeable host rock, thereby reducing the problem to
discretization of the (connected) fractures alone (e.g. Long et al., 1982; Cacas et al., 1990;
de Dreuzy et al., 2013; Zhang, 2015). This has the advantages of minimizing the size of the
resulting linear system of equations to something reasonably manageable on a small computer
since discretization of the rock matrix (and its inherent degrees of freedom) is not required. In
doing so, it mitigates the problem of discretizing sub-parallel fractures by avoiding the creation of
thin, flat discrete elements in the matrix along the edges defining the intersection of such
fractures. If, however, fluid exchange is to be considered in the steady state flow solution, the
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most popular approach is "Discrete Dual Porosity Moder (Lee et al., 2001; Li and Lee, 2008) in
which an ad hoc flux distribution in imposed on the fracture faces. In each of these two major
approaches, the fractures are considered to be infinitesimally thin (as they are in our model)
however, the fracture/matrix flux is either neglected or approximated by equations supplementary
to the main Poisson equation driving the system. Some progress has been made in flux—balanced
finite volume methods (Mourzenko et al., 2011), also on infinitesimally thin fractures, whereby
the support volume and nodal discretization for flux conservation is carefully designed to allow
for discontinuities in pressure where present. We note that such double-discretization of resistive
fractures was proposed independently in Weiss (2017) in the case of electrostatics, and with the
additional observation (and demonstration) that the two discretizations needn't be one-for-one in
their node/element definition. In addition, the discrete-dual-porosity model has been modified to
model DC resistivity responses of discrete, non-isolated fractures, which employs a
semi-analytical formulation that accounts for the electric current flow exchange between fractures
and surrounding media (Roubinet and Irving, 2014; Caballero-Sanz et al., 2017), and has been
applied to 2D and 2.5D fractured media consisted of large number of connected fractures. To our
knowledge, the electrical resistivity responses due to 3D complex discrete fracture networks
embedded in a rock matrix consisting of hundreds of arbitrarily-oriented fractures with variable
aperture have not yet been modeled.

Here, we use the recently developed hierarchical material model in finite element analysis to
model the DC resistivity responses in 3D fracture media. The hierarchical finite element method
(Hi-FEM) (Weiss, 2017) extends the Cartesian-grid-constrained circuit model of Yang et al.
(2016) for unstructured tetrahedral meshes that allow to represent electrical conductivity
distributions of complicated fracture network configurations. The Hi-FEM algorithm, within an
unstructured tetrahedral mesh, embraces a hierarchy in the electrical properties of 3D conducting
media, where not only tetrahedral elements but also triangle elements (2D, facets) and line
elements (1D, edges) can locally contribute to the overall electrical conductivity of a model. The
hierarchy provides a flexibility to represent very thin fractures as connected facets or linear
features as connected edges without any mesh refinement and therefore drastically lessens the
computational cost by reducing the degree of freedom for discretization.

In this study, we mainly focus on the behaviors of azimuthal resistivity responses over 3D
stochastically-generated, complex fracture networks. First, we validate the hierarchical material
model concept for both homogenized isotropic and anisotropic media as well as for "2D-like"
random fracture networks. Then, we consider isolated, regularly-spaced, finite-sized fractures that
present strong anisotropy to better understand the effect of the finiteness of fracture sizes on the
azimuthal resistivity profiles. Further, we present numerical DC modeling results of complex
fracture networks following certain statistical distributions. Particularly, the effects of fracture
length and aperture distributions on azimuthal geoelectrical responses are investigated.
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6.3. HIERARCHICAL FINITE ELEMENT METHOD
(HIFEM)

In the electrostatic limit, the electric field E = Vu throughout a 3D conducting media a, subject
to a given steady electric current density J, is governed by the well-known Poisson equation,

—V • (a • Vu) = V • .15, (6.1)

where u is the electric scalar potential and a is the electrical conductivity function. Here, it is
noted that the electric field E is intentionally considered as "Vu" instead of commonly-used
"—VO to yield a more convenient variational form for the finite element solution.

The hierarchical material model concept incorporates the hierarchy over volumes, facets and
edges of a finite element mesh into finite element analysis by introducing a composite definition
of the electrical conductivity (Weiss, 2017):

Nv NF NE

c(x) = igewev (X) + E segiFe (yo + E tegge (X),
e=1 e=1 e=1

where hierarchical, rank-2 basis functions are given by

and

%Fey ix\ = thag (1, 1, 1)e 
1 if x E volume

0 otherwise

41: (x) = diag(0, 1, 1)e {10

xpEe ) = diag(1,0,0)e 01

e

if x e facet e

otherwise •

if x e edge e

otherwise •

(6.2)

(6.3)

(6.4)

(6.5)

Here, Nv, NF and NE denote the number of volumes, facets and edges in the finite element mesh,
respectively. The subscript e of the diagonal rank-2 tensors denote the local principal axis
reference frame defined by the orthogonal unit vectors el, e2 and e3. The basis function for
tetrahedra includes all orthogonal vector directions for a given volume element e (Eq (6.3)),
whereas the basis function possesses only the e2 and the e3 directions for facets that lie in the
plane of a given facet e (Eq (6.4)), and only el direction for edges that is parallel to the direction
of a given edge e (Eq (6.5)). In this way, the electrical conductivities on facets and edges are
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strictly local. The electrical conductivity function given in Eq (6.3) has the SI unit of S•m2 which
imposes se to be the conductivity-thickness product (S, conductance) of facet e and te to be the the
product of conductivity and cross-sectional area (S•m) of edge e.

Consequently, the composite representation of the electrical conductivity function inherently
result in a composite element-stiffness matrix in the finite element analysis that can be written
as

Nv NF NE

K = E cyeKe4 + E seKe3 + E teKe2
e=1 e=1 e=1

(6.6)

where K4e is the 3D element-stiffness matrix (4 x 4) of eth tetrahedron, Ke3 is the 2D
element-stiffness matrix (3 x 3) of eth facet and Ke is the 1D element-stiffness matrix (2 x 2) of
eth edge.

The global form of the linear system of equations are then constructed for the model domain in
the usual way of the classical finite element method and can be written as

Ku = b, (6.7)

where K is the global composite element-stiffness matrix and b is the standard right-hand side
vector consisting of the inner products of piecewise continuous, linear basis functions and V • J.
Here, the global finite-element system of equations (Eq (6.7)) is solved iteratively by using a
Jacobi-preconditioned conjugate gradient (J-PCCG) solver (Weiss, 2001, 2017). For a mesh of N
nodes, the global finite-element system of equations is N x N, but its explicit storage is avoided
by using J-PCCG which only requires computing the action of the matrix on some vector rather
than explicit matrix storage (Weiss, 2001). The J-PCCG algorithm employs 6 working vectors,
one the right-hand-side solution vector and one vector for the Jacobi scaling. Hence, the total
storage cost is N x 8 real double precision (8-byte) words. Storage of the model is Nv +NF
double precision words with Nv » NF. The storage of nodes is N x 3 double precision words
(node coordinates). The Tetrahedra definition is Nv x 4 whereas the definition of triangles is
NF x 3 integer (4-byte) words. Therefore, for the models given in Figure 6-1, the minimum and
the maximum total storage costs for a simulation are 43-105 MB. We iterate the solution on
J-PCCG until the residual norm is 10-12, a value determined through experience with these
problems to yield high precision results. Example convergence plots of residual versus time and
residual versus iteration are shown in Figure 6-1, showing generally monotonic convergence.

Whereas previous examples in fracture modeling with the Hi-IHEM method (Weiss, 2017) dealt
only with non-intersecting fractures in rock matrix, discretizing the 3D intersecting fracture
network of interest here poses additional challenges. The computational mesh required for a
medium with large amount of finite, arbitrarily-oriented fractures may impose very short
intersection distances or low angles between fractures (Zhang et al., 2016). For such dense,
complex fracture models, Delaunay-based (e.g. Bogdanov et al., 2003; Mustapha, 2011) and
advancing-front methods (Koudina et al., 1998; Mourzenko et al., 2011) can not generate fine
meshes that ensure the computational precision. One remedy for this problem for discrete fracture
networks (without surrounding media) has been proposed as the projection of 3D staircase-like
discretization of fracture borders and intersections onto each fracture plane (de Dreuzy et al.,
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gate gradient linear solver (Weiss, 2001) for discretization of the
fracture models consisted of 100 fractures following power-law
fracture length distribution, described in Section 4.2.1. The re-
sults show the elapsed times for a target residual norm 1 x 10-12.

2013). We remark that there are many other methods that particularly focus on improving the
efficiency of mesh generation for such models (e.g. Zhang, 2015; Zhang et al., 2016) and that the
relative merits of meshing algorithms (efficiency, ease of use, time, accuracy, quality measures,
etc) are an interesting, but tangential, topic to the primary topic of this paper. Furthermore,
creation of a complex three—dimensional mesh is strongly dependent on the workflow of the mesh
creator, as well as the underlying meshing algorithm. Hence, we offer here some general
comments on mesh design for our problems with full recognition that more efficient methods or
workflows may exist. Here, the mesh generation of fractured media is performed by using the
meshing package "Cube (cubit.sandia.gov) following the execution of an external script that
automatically generates the geometry of fractures for a given set of fracture parameters (e.g., size,
orientation, aperture, etc. distributions). We employ the Delaunay triangulation/tetrahedralization
to discretize the fractures for our models. We resist any "hand tuning of the mesh" due to
intersecting sub-parallel fractures, and instead we reject the realization and substitute it with
another one produced from a different random seed. As a reference, the meshes of the models
given in Section 4.2.1. take on the order of —20 seconds for geometry definition and -40-60
seconds for full discretization on a 2017 MacBook Pro with 16GB main memory.
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6.4. BENCKMARKING

6.4.1. Isotropic media

Previous benchmarking of the Hi-FEM algorithm described in the previous section was shown in
Weiss (2017). Here, we extend the suite of benchmarking results by considering isotropic and
anisotropic media consisting of thin conductive fractures. In addition, the benchmarks for
"2D-like random fracture networks are also considered in Appendix. As an analytical
benchmark to validate the numerical solution of the Hi-FEM, we consider a vertical dike of
anomalous resistivity in a uniform half-space. The dike reaches the surface with a constant
thickness and extends to infinity in other two dimensions. The electric potentials due to this
geoelectric structure can be obtained semi-analytically by calculating the summation series of the
reflected electric current images from dike boundaries (Telford et al., 1990). The series in the
analytic solution are very slow to converge for small dike thicknesses and require many thousands
of terms to achieve an acceptable accuracy.

Here, we consider two vertical dike models with equivalent conductances to compare the volume-
and facet-based finite-element solutions against the analytical solutions. For the test of the
volume-based finite-element solution, a 5-m thick dike with a conductivity of 10-1 S/m is
considered, which can be adequately discretized by using tetrahedral volume elements without
imposing a high computational cost. In addition, to test the validity of the facet-based FE
solution, a very thin dike (0.1 m) with the equivalent conductance of 0.5 S is considered, whose
thickness is volumetrically very small with respect to the scale of computational volume. For both
models, the dike is located in a 10-2 S/m half-space and 20 m away from the origin of the
computational domain where a point current source is injected. The finite-element solutions are
computed for a 10 x 10 x 5 km volume. The Dirichlet boundary condition is imposed at the
edges of the volume by using the analytical solution of a uniform 10-1-S/m halfspace, except the
air-Earth interface where the Neumann boundary condition is enforced. The volume-based
finite-element solution over the 5-m dike is computed on an unstructured mesh consisting of
N = 231618 nodes and Nv = 1337472 tetrahedra. The vertical dike itself is represented by
106367 tetrahedra. The facet-based solution for the 0.1-m dike with the equivalent conductance is
computed on the same mesh without the need of any additional nodes for mesh refinement. The
thin dike is defined by NF = 10048 connected facet elements in the mesh and its 0.5-S
conductance is assigned to these facets.

For the benchmarking tests, the numerical solutions of both models for a pole-pole array with a
fixed source located at the origin, along and perpendicular to the dike are compared. Figure 6-2
shows the analytical and the numerical solutions for the 5-m and the 0.1-m dikes with the
equivalent conductances of 0.5 S. The volume-based finite-element and the analytical solutions
for the 5-m dike show a good agreement. The disagreement at short offsets is to be expected
given the 1/r singularity in the exact solution at zero offset; however, this does not present
significant far-ranging effects (Lowry et al., 1989).

The profiles also indicate a good agreement between the facet-based finite element and analytical
solutions over the dike for the thickness 0.1 m with equivalent conductance. Moreover, the
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agreement at dike for both numerical solutions are excellent. Overall, the comparison results
demonstrate the validity of the Hi-FEM solutions.

In addition, given a very thin dike, the electrical response at the dike is negligible due to its
insignificant thickness with respect to the scale of interest (0.1-m dike, Figure 6-2a). On the other
hand, when the dike has a significant thickness, the response across the dike thickness becomes
anomalous at the scale of interest (5-m dike, Figure 6-2a). This implies that the responses due to
surface-like structures with significant thicknesses with respect to the scale of interest can not be
approximated by the facet-based conductance representations, instead these structures must be
explicitly discretized by volumetric elements with bulk electrical conductivity.

6.4.2. Anisotropic media

As yet another benchmarking exercise for the hierarchical representation of electrical
conductivity, the consistency in electrostatic response between results from continuum—scale
electrical anisotropy and those from a model composed of a discrete set of evenly—spaced
conductive vertical fractures embedded in a homogeneous host medium is evaluated (Weiss et al.,
2018). The model domain is defined as a 500 x 500 x 200 m volume that is discretized with
tetrahedra of conductivity a. The conductive sheets embedded in the host domain are defined as
vertical planes of contiguous triangular facets and set to be parallel with a spacing of d = 5 m
(Figure 6-3). A conductance value s is assigned on the facets of these planes representing their
anomalous conductivity Aa = a' — a and equivalent thickness (i.e. s = Aa f). Equivalent
values for the bed—parallel all and bed—perpendicular al elements of the (diagonal, in this case)
conductivity tensor are therefore found in the limit cr' —> 00, —> 0 and s=3at constant, taking
the values al = a and all= a s 1 d. As in the previous examples, the air/earth interface is
assigned a homogeneous Neumann boundary conduction, whereas the remaining sides of the
model domain are assigned an inhomogeneous Dirichlet boundary condition in accordance with
the known analytic solution for the potential u due to a unit magnitude point source:

u(x,y,z) = (27r \/

x2 
y2 Z2

— — —
61 

all 6II)

(6.8)

Agreement between the finite element and analytic solution is excellent in the isotropic limit
(s = 0 S) for all source—receiver offsets in the mesh (Figure 6-4), whereas the agreement in the
anisotropic case (s = 0.1 S) is evident at larger offsets — 2 — 3d at where the length scale of
measurement reaches an apparent homogenization limit More extensive anisotropy examples and
discussion can be found in Weiss et al. (2018).
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6.5. DC ELECTRICAL RESPONSES OF DISCRETE
FRACTURE NETWORKS

6.5.1. Regular Fractures

First, to investigate the effect of the fracture size on geoelectric responses, we consider numerical
models made up of regularly-spaced, finite-size fractures. These fracture models present strong
anisotropy; however, being different from a homogenized anisotropic medium, they comprise
circular conductive fractures that implicitly impose some heterogeneity due to the fracture shape.
To examine the impact of the anisotropy arising from the circular fractures on DC resistivity
responses, three simple cases are considered: horizontal, vertically-oriented and 45°-dipping
fractures in a uniform half-space (Figure 6-5). In addition, we also consider different fracture
spacings (d = 50 m, 10 m and 5 m) for these models. The fracture domain is defined over a 100
x100 x 100 m volume that is completely spanned by the circular fractures with 50-m radius. The
conductivity of the host media is 10-2 S/m and the conductance of the fractures with constant
aperture (thickness) is defined as 1 S.

Figure 6-6 shows the azimuthal resistivity profiles measured as by a pole-pole survey with a 20-m
fixed offset. Figure 6-6a. indicates that the horizontal fractures produce uniform azimuthal
resistivity profiles as in fully homogeneous media. While the fracture spacing increases, the
resistivity slowly decreases implying that given a very dense fracture spacing, the resistivity will
converge to an intermediate half-space's resistivity (Figure 6-6a). The vertical fractures produce
ellipses not identical but very similar with the well-known resistivity ellipses of homogenized
anisotropic media whose major axis coincides with the strike of the fractures. Figure 6-6c shows
that the resistivity profiles of the 45°-dipping fractures are not symmetric but still are elongated in
the strike direction of the fractures. In addition, we see that lower resistivity values indicate the
updip direction. The resistivity ellipses of all models also indicate that the most dramatic decrease
in resistivity respect to fracture spacing occur when the fractures are vertical (Figure 6-6).
Further, only 45°-dipping fractures result in some distortions on resistivity ellipses (Figure 6-6c,
especially d = 10) directly related to the fracture finiteness.

6.5.2. Complex Fracture Networks

Practically, the complete quantification of the complex topologies of fracture networks is not
feasible due to their wide range of length scales and the lack of accurate field measurements (e.g.
de Dreuzy et al., 2001; Xu and Dowd, 2010). In general, complex fracture networks are studied
by stochastically representing the network geometrical properties (location, length, aperture,
conductivity, etc.) by certain distributions where each fracture is defined explicitly as the
so-called "Discrete Fracture Network (DFN)" (Long et al., 1982; Robinson, 1983; Andersson
et al., 1984; Andersson and Dverstorp, 1987; Gutierrez and Youn, 2015; Lei et al., 2017). Here,
benefiting from the Hi-FEM approach that enables to economically define fractures by connected
facets, we model the DC resistivity responses due to stochastic complex fracture networks which
possess strong heterogeneity in their geometric properties. Particularly, we consider DFN models
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to examine the influences of the fracture length and aperture distributions on geoelectrical
responses.

6.5.2.1. Length distribution

Fracture lengths exhibit a scaling character presenting long-range correlations at a broad range of
length scales, which is commonly characterized by a power-law distribution (e.g. Davy, 1993;
Bonnet et al., 2001). The power-law exponent a of the distribution controls the ratio of large and
small fractures in fracture networks. While small power-law exponent values generate similar
small size fractures, large exponent values correspond to fracture systems where the connectivity
of fracture network is enabled at larger scales via large fractures. The range of exponent a for
fracture networks has been observed to be between 1.3 and 3.5 (Bonnet et al., 2001). To examine
the effect of the fracture length distribution on DC resistivity responses, we consider three
complex fracture networks following a power-law length distribution with the power-law
exponent a values of 1.5, 2.5 and 3.5. Moreover, to investigate the influence of the total number of
the fractures in the network, the power-law length distributed models are also considered for the
cases when the total number of fractures is 10, 50 and 100. The locations and orientations of the
fractures are drawn from uniform distributions. For each statistical geometric property of
fractures, a unique random seed is chosen and kept as the same for each model so that the
behavior of geoelectric response only depends on the power-law exponent and the number of
fractures.

The fracture network is defined in a 100 x100 x100 m volume where each fracture is regarded as
an ellipse. The conductivity of the host media is 10-4 S/m, a value consistent with granitic
basement (relevant to geothermal) or brittle limestone where fractures can be either open or
occluded by secondary mineralization. The fractures have a constant conductivity of 1 S/m with
an aperture of 10-3 m and are defined as facets with a conductance of 1 S/m x 10-3 m = 10-3 S.
The power-law length distribution is truncated for all models with a radius interval of 5 m-80 m
to allow network connectivity up to a degree. In addition, to better understand the relationship
between the network connectivity and the resulting geoelectric responses, the backbone structure
of each fracture network is also considered. The backbones are obtained by connecting the center
of each fracture intersection with the center of the intersecting fracture. Figure 6-7 presents the
connectivity of the fracture networks as a function of both power-law exponent and the number of
the fractures. It can be seen that increasing number of fractures and dominance of large fractures
in the system inherently improve the connectivity of fracture system.

We consider a pole-pole azimuthal survey with a fixed offset of 20 m to investigate the azimuthal
behavior of the DC resistivity responses over these complex fracture media. The polar plots
(Figure 6-8) show that the fracture network following the power-law distribution of a = 1.5
produces the lowest resistivity values in comparison with the other two fracture models,
regardless of the total number of fractures in the system. The fracture network with the smallest
power exponent (a = 1.5) results in a significant decrease in resistivity even when the number of
fractures is small (Figure 6-8a) implying a strong influence from the presence of large fractures in
the system.
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When the number of fractures is small (N f racture = 10), the resistivity profiles are almost uniform
azimuthally and do not provide an indication regarding the location or orientation of fractures in
the media (Figure 6-8). On the other hand, while the number of fractures increases, we see that
the azimuthal resistivity profiles become distorted along with increasing heterogeneity of the
fracture networks. The distorted resistivity profiles do not present resistivity ellipses with an
obvious "major axis" that is commonly observed with anisotropic fracture sets or joints (e.g.,
Taylor and Fleming, 1998; Busby 2000). This is a consistent result due to the fact that the fracture
networks are very complex rather than anisotropic and that the length scale of measurement is
below the homogenization limit. Moreover, while the distortions on the resistivity profiles do not
present a strong correlation with the network connectivity, we see that the most connected
network produces the most distorted resistivity profile. The three cases with increasing fracture
number can be considered as the evolution of a developing fracture network since we employ the
same random seed for the distribution of fracture locations. In summary, the azimuthal resistivity
profiles indicate that significant decreases in apparent resistivity and their direction-dependence is
strongly controlled by the connectivity of the fracture networks.

6.5.2.2. Aperture

Fracture aperture is a crucial controlling parameter on fluid transport as well as electrical current
flow. Laboratory experiments and field observations suggest that fracture aperture usually obeys a
lognormal distribution (e.g. Snow, 1970; Long and Billaux, 1987; Tsang et al., 1996) and may be
related to fracture size (e.g. Hatton et al., 1994; Bonnet et al., 2001). Many discrete fracture
simulations employ lognormal aperture distribution to investigate the behavior of fluid flow in
fracture media (e.g. Gong and Rossen, 2017). Here, we analyze the DC resistivity responses
resulting from different fracture aperture distributions.

Particularly, we examine the effect of fracture aperture distribution by considering two fracture
networks with highly differing connectivity. The well-connected fracture network is a model with
100 fractures that follows a power-law length distribution (a = 1.5, Figure 6-7a). By considering
the same volume size (100 x 100 x 100 m), the second fracture network is generated from a
uniform fracture size distribution with a upper limit of 20 m to obtain a narrow fracture length
distribution that results in poor connectivity (Figure 6-9). The locations and the orientations are
chosen as random and they are drawn from unique random seeds for each model. For the fracture
apertures, we consider lognormal, normal and uniform distributions generated from different
random seeds. The mean and standard deviation of the lognormal and normal distributions are
10-3 m and 0.5 m, respectively. The lognormal and normal distributions are truncated in the
range 10-5 m to 10-2 m which is also the range of the uniform aperture distribution. In addition,
we also consider the models for which fracture aperture is positively correlated with fracture size.
To achieve the fracture size-aperture correlation, each aperture distribution already obtained for
the case of independent correlation is sorted and subsequently the aperture values are assigned to
each fracture according to fracture size. In our simulations, the conductivities of the host media
and the fractures are defined as 10-4 S/m and 1 S/m, respectively.

Figure 6-10 shows the resistivity polar plots of the two fracture networks following different
aperture distributions. The resistivity plots indicate that for all models with and without
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size-aperture correlation, the normal aperture distribution results in the highest azimuthal
resistivity values whereas the uniform aperture distribution results in the lowest azimuthal
resistivity values. In addition, the plots also indicate that the difference in resistivity in the
presence or absence of the fracture size-aperture correlation are much larger for the
well-connected fracture network (Figure 6-10a). For the well-connected fracture network, the
aperture distributions with correlation always result in lower resistivity values in azimuth in
comparison to the ones with no correlation. On the other hand, the network with poor
connectivity does not exhibit such a systematic trend; moreover, we see that the azimuthal
resistivity values tend to be slightly larger in the absence of correlation and at some azimuths they
remain unchanged. As a result, these results suggest that when a fracture network becomes more
connected, the fracture size-aperture correlation has more control on the behavior of resistivity
responses.

6.6. DISCUSSION

We further extend the previously published benchmarking of Hi-FEM algorithm (not the
algorithm itself) by considering the comparisons with analytical solutions for both the vertical
dike and the anisotropic media as well as "2D-like' random fracture networks. These results
show excellent agreement between Hi-FEM and independent reference solutions. The numerical
results of the regularly-spaced, circular fractures indicate that when fractures are much larger than
the azimuthal survey profile, the azimuthal resistivity profiles still present resistivity ellipses with
major axis coincident with the strike direction of fractures similar to the ones measured over
homogenized anisotropic fracture media, and the influence of the fracture shape becomes
significant only in case of dipping fractures.

The azimuthal resistivity profiles of fracture networks for which the lengths follow power-law
distributions reveal that the DC resistivity responses are strongly controlled by the connectivity
and the heterogeneity of the fracture network. On the other hand, the resistivity profiles of the
complex fracture networks point out strong and complicated azimuthal variations in electrical
responses in comparison with the resistivity ellipses of the regularly-spaced striking fractures,
emphasizing the need of multiple current sources locations and various electrode offsets to study
complex fracture networks. Further, the modeling results also indicate that the DC resistivity
responses are very sensitive to fracture connectivity. This highlights the suitability of resistivity
measurements for 4D (time lapse 3D) characterization and therefore the importance of efficient
3D inversion algorithms.

The aperture distribution in the presence and absence of the fracture size-aperture correlation has
a strong influence on the geoelectric responses in case the fracture network is connected at large
scales (such as in the model with the exponent a = 1.5). For the well-connected model, the
aperture distributions with correlation systematically cause a decrease in resistivity. In contrast, in
the case of a poorly-connected fracture network, the influence of the correlation becomes
insignificant. These results show similarity with the modeling results of de Dreuzy et al. (2001)
which point out that for power-law distributions for which the exponent a < 3, the aperture
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correlation result in larger hydraulic permeabilities and different flow structures, when the
correlation becomes irrelevant for narrow fracture length distributions.

The finite-element meshes for the fracture models considered here include —1-2 millions of
tetrahedra, depending on fracture complexity. The elapsed times for the DC resistivity simulation
of the models, excluding the elapsed time for meshing, are in the order of a couple of minutes,
without parallel processing, on a MacBook Pro having 16 GB memory and a 3.5 GHz Intel Core
i7 processor. These fast simulation times are possible only through the use of the hierarchical
Hi-FEM algorithm. For a comparison, a single fracture 1-mm thick and 2-m in diameter would
require —25 million tetrahedra to discretize, thus demonstrating that fracture simulations such as
those shown here are beyond the capabilities of present day supercomputing facilities if standard
finite element methods were to be considered.

Here, we modeled DC responses of 3D fractured media incorporating the network-scale
heterogeneity into our finite-element analysis. Our results show that the depth and azimuthal
position of fractures relative to the electric current source location strongly affect geoelectrical
responses, and that how fractures interconnect (i.e., network backbone structure) substantially
controls the distribution of resulting electric potentials. This strongly suggests the necessity of 3D
considerations while the DC responses of fractured media are being studied. Further, we consider
the homogeneity of background geology and the heterogeneity at network scale in our models.
Our future studies will consider variable background geology to quantify stratigraphic coupling
between fractures as well as fracture scale heterogeneity (such as variable fracture aperture).

6.7. CONCLUSIONS

Here, we demonstrated the relevance of the hierarchical finite element method on DC resistivity
modeling of complex fracture networks. We presented demonstration calculations for a small set
of realizations and intended to show possible DC responses of fractures. The representative
fracture models considered herein reveal the complexity of the resulting DC resistivity responses
due to the heterogeneity of fractured media as well as how the characteristic properties of
fractured media (such as network connectivity, fracture aperture distribution and total number of
fractures) control the complexity. This motivates the idea of retrieving the fracture properties from
observed DC resistivity data. On the other hand, it also leads us to modify/improve data collection
methods and develops specific inversion schemes to reveal geologic information at multiple
length scales from resolution-limited data. Finally, we highlight the need of more numerical
studies to better understand the signatures of fracture properties on DC resistivity responses as
well as to further investigate the controls on the scale limit of representative elementary volume
and the transition from homogenized anisotropy to multi-scale heterogeneity.
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6.8. APPENDIX: RANDOM FRACTURE NETWORK
BENCHMARKING

To supplement the benchmarking exercises previously described in Section 3, we describe here
two additional exercises inspired by flow modeling in 3D fractured media (de Dreuzy et al.,
2013). Both in the present manuscript and in Weiss (2017), finite element results from the
hierarchical materials property representation were compared against various analytic solutions
for simplified geometries containing either an isolated scattering anomaly (e.g. a buried pipe or a
single fracture/dike) or regularly spaced, non—intersecting fractures to approximate macroscopic
anisotropy. In this supplementary analysis, we consider a new class of benchmarking models —
randomly distributed intersecting fracture planes — arranged in such a way, with appropriate
boundary conditions, that the electric potential within is available either as an analytic solution or
an easily—derived numerical solution from an equivalent 2D flux network.

A convenient simplifying assumption for benchmarking models of 3D fracture networks is to
consider the case of conducting fractures embedded in a non—conducting host. In the case of fluid
flow, we may speak of hydraulic conductivity, whereas in the case of Maxwell's equations we
refer to the electrical conductivity. Regardless, the Poisson equation Eq (6.1) describes both
steady state Darcy flow and electrostatics, and hence the "type of conductivity under
consideration may safely be assumed by the context of the governing physics. Given this
assumption of a non—conducting host, we define the model domain of the benchmark as a
rectangular box, on whose top and bottom sides we impose a potential difference through
inhomogeneous Dirichlet boundary conditions, and lateral sides endowed with a homogeneous
Neumann boundary condition (Figure 6-A 1, left). When the box is populated with intersecting
fractures, each orthogonal to opposite lateral faces of the box (e.g., faces parallel to the x — z
plane, assuming z is the vertical coordinate), the Neumann condition on those lateral faces, along
with the Dirichlet condition on the box top and bottom, ensures that the fracture response is
invariant in the lateral direction orthogonal to that plane (e.g., the y direction). The homogeneous
Neumann condition on the remaining two lateral sides of the box is thus a "no flow" condition",
restricting fluid/current to zero along those edges. And because the fractures are embedded in a
perfectly non-conducting medium, all flow/current is restricted entirely to the fractures
themselves, with none in the surrounding host medium. Hence, the 3D problem, with a fully
discretized domain of planar fractures and volumetric host material, yields a response that is
equivalent to that of a far—simplified 2D flux network where the fractures are only modeled in
(x — z) cross-section, which in some cases, offers a simple analytic solution.

Such a simple analytic solution is available when the fractures propagate from the top of the box
to the bottom, and do not exit from the side of the box (Figure 6-A1). In this case it is well known
that the potential at a point within some fracture is strictly a linear function of the vertical
coordinate alone (e.g. de Dreuzy et al., 2013). We construct a benchmark model consisting of a
10 x 10 x 10 m block impregnated by 21 randomly distributed fractures which adhere to
aforementioned geometrical constraint. Fractures were uniformly assigned a conductance value
s = 1 S whereas the "non—conductinr host medium is assigned conductivity 1 x 10-12 S/m, a
value comparable to dry air at sea level (Seran et al., 2017). Three dimensional meshing of this
structure is done in the Cubit meshing environment (commercially available through CSimSoft)
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in two steps: definition of geometrical elements of the model, and their subsequent meshing. The
geometry is constructed by first defining the 10 m box, after which the box is "sliced"
top—to—bottom, by a sequence of 21 randomly defined planes. At the introduction of each
fracture, the slicing algorithm determines which volumes are affected by slice, subdivides them
accordingly, and renumbers the volume/face/edge accounting to reflect the new geometry so that,
for example, adjacent faces of a just—sliced volume are defined by a single face rather than a pair
of spatially coincident but uniquely numbered facets. Once the geometry specification is
complete, the fracture surfaces are meshed, followed by an advancing front method for meshing
tetrahedra in the remaining host medium. Node density of the discretization on the fractures is
shown in Figure 6-A1. The resulting 3D model contains 23743 nodes, 123814 tetrahedra for the
host medium and 25874 triangular facets for the fractures. Total meshing time is about 80 s.
Solution time for the Jacobi—scaled conjugate gradient solver is 1.7 s over 211 iterations for a
1010 reduction in the £2 norm of the residual. At the intersections of the fractures, the
root—mean—squared error between potentials from the 3D solution and the analytic solution 0 exact

is approximately 1 x 10-8 V, thus demonstrating excellent agreement.

For the slightly more complex case where some of the fractures propagate from the top of the box
to the side of the box, rather than the bottom, we see excellent agreement between solutions
obtained by the 3D code and an independent 2D solution, with RMS values again on the order of
1 x 10-8 V at the fracture intersections (Figure 6-A2). In the hydrology literature, such problems
are sometimes referred to as "2D—like fracture networks" (de Dreuzy et al., 2013) and serve an
important role in both benchmarking and examining the role of fracture complexity on overall
fracture system response. Because of the relative ease in doing so, we construct our own 2D
fracture network simulator for comparison of results with those obtained by 3D code. In the 2D
simulator, fracture segments are represented only by their endpoints (no nodes in between, as is
the case with the 3D discretization) and a linear system of equations is constructed which
enforces flux/current balance fracture intersections. Endpoints at the on the "top" and "bottom" of
the network are assigned fixed values, equivalent to our Dirichlet condition for the 3D problem,
and those on the "sides" are prescribed with a homogeneous Neumann condition, just as in the 3D
case. The resulting linear system matrix can be assembled edge—wise and thus knowledge of the
coordination number of each fracture intersection is not required for matrix assembly.
Furthermore, the edge—wise matrix assembly means that we can solve 2D linear system of
equations matrix—free (again, as we do in 3D) using conjugate gradients. For the 2D—like fracture
network considered here, again there is a total of 21 (s = 1 S) randomly generated fractures
slicing a c = 1 x 10-12S/m non—conducting domain over 10 x 10 x 10 m. Ten of the 21 fractures
span the top and bottom sides of the domain, whereas the remaining 11 crosscut horizontally.
Meshing in 3D is done as before: sequential slicing of the domain by the introduction of each
fracture; and, advancing front meshing of the fracture faces followed by interstitial volumes. Total
number of nodes is 44741 over 241810 tetrahedra with 47267 triangular facets defining the
fracture surfaces. Simulation time is 6.3 s over 386 conjugate gradient iterations for a reduction in
£2 residual norm by a factor of 1010. Empirical scaling of the conjugate gradient solver follows
expectations: roughly twice the number of iterations and degrees of freedom in this second
benchmark in comparison to the first results in a factor of 4x increase in runtime. For the 2D flux
simulator, there are 293 fracture segments defined by a modest 178 nodes. Solution of the linear
system by a 1010 reduction in £2 residual norm occurs over a svelte 3 ms and 117 iterations.
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Figure 6-2. Comparison of analytical (lines) and HiFEM (sym-
bols) solutions for the vertical dike models. The DC apparent
resistivity is plotted a) perpendicular and b) parallel to the dike
as a function of distance from the point source. Black and red
lines denote the analytical solutions of 0.1-m-thick and 5-m thick
dike models, respectively.
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500 m

Figure 6-3. Schematic model of homogenized anisotropic
medium consisted of regularly-spaced, vertical fractures.
Fractures with a uniform conductance s are located in a ho-
mogeneous medium n with a conductivity of Œ. Fracture
separation is d. Point current source (black dot) is located in
the center of model. FD and FN denote Dirichlet and Neumann
boundary conditions, respectively.
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Figure 6-4. Electric potential from a 1 A point source on the
air/earth interface, plotted as a function of lateral offset for two
different Earth models: a .5 = 0.01 S/m halfspace (black); and,
when the a halfspace is filled with infinitely thin vertical sheets
with conductance s = 0.1 S and spacing d = 5 m (red). Offsets in
the sheet—perpendicular and —parallel directions are annotated
by I and II, respectively.

d /

Figure 6-5. Schematic model of regularly-spaced circular frac-
tures: a) horizontal, b) vertical, c) 45°-dipping fractures. am
and af denote medium and fracture conductivity, respectively.
d denotes fracture separation. h shown in model a denotes the
depth of the first horizontal fracture from surface and is set to
be 1 m.
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Figure 6-6. Azimuthal resistivity profiles of a) horizontal, b) ver-
tical and c) 45°-dipping circular fractures (Figure 6-5). Resistiv-
ity is sampled along a 20-m radius survey path. The resistivity
profiles of regular fractures with fracture densities of 50 m (red),
10 m (blue) and 5 m (green) are shown.
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Figure 6-7. Fracture networks following power-law fracture
length distribution with power-law exponents of a =1.5 (a), 2.5
(b) and 3.5 (c). The three development stages of fracture net-
works (N fYacluYe =10, 50 and 100) are shown. The 3D backbone
structures (pipes in blue) show connectivity of fracture net-
works. Fractures with random orientations are randomly dis-
tributed over a 100 x100 x100 m volume. The survey profile with
20-m radius (black circle) and the point current source (black
dot) location are shown on each fracture model. The fracture
aperture (10-3m) is constant and uniform for each fracture. The
conductivities of fractures and homogeneous half-space are 1
S/m and 10-4S/m, respectively.
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Figure 6-8. Azimuthal resistivity profiles of fracture models (Fig-
ure 6-7) consisted of a) 10, b) 50 and c) 100 fractures, following
power-law fracture length distribution with power-law exponent
of a =1.5 (red), 2.5 (blue) and 3.5 (green).
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Figure 6-9. Fracture networks where fracture apertures are pos-
itively correlated to the fracture length, obeying lognormal, nor-
mal and uniform distributions. a) A well-connected fracture net-
work shown in Figure 6-7a, b) a poor-connected fracture net-
work following a narrow uniform length distribution. Both mod-
els consist of N = 100 fractures. Fractures are colored by their
apertures and facet elements are shown on fractures. For vi-
sual clarity, three aperture distributions have different aperture
limits. The apertures of the lognormal distribution take values
between 3.60e-5-8.41e-3, the apertures of the normal distribu-
tion take values between 3.37e-5-8.90e-3, and the ones of the
uniform distribution take values between 2.67e-4-9.83e-3.
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Figure 6-10. Azimuthal resistivity profiles of (a) well- and (b)
poor-connected fracture networks shown in Figure 6-9 where
fracture apertures obey lognormal (red), normal (blue) and uni-
form (green) distributions. The profiles are shown in presence
(solid) and absence (dashed) of fracture length-aperture corre-
lation. The mean value and standard deviation of lognormal and
normal distributions, and the truncation limits of uniform distri-
bution are given in the legend.
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3D electrostatic potential
Rms(03. - exact) -1 x 10-8v

9 = 1 S

a = 1 x 10-12 S/1/1

= 1 V

=

10 x 10 x 10m

2D slice perpendicular to fractures

V0112
o.188 Wm
0.200 V/m

Figure 6-11. (left) Rendering and benchmark problem setup for
an electrically conducting (s = 1 S) 3D fracture network in "air"
(cy = 1 x 10-12 S/m ) where the fractures only connect 4 of the 6
sides of the modeling domain and are spatially invariant one di-
rection. For clarity, only the discretized fractures are shown,
where the air region between fractures (not shown) is dis-
cretized by unstructured tetrahedral elements. See text for fur-
ther details. Potentials within the fractures computed by the
3D HiFEM algorithm (color coded) show the expended linear
dependence on the vertical coordinate and agree with the ana-
lytic solution to an RMS error of approximately 1 x 10-8 V. (right)
Two-dimensional cross section through the middle of the vol-
ume shown on the left showing the magnitude of the potential
gradient (electric field) within the fractures as calculated by the
3D HiFEM algorithm. As expected, for cases such as this where
the fractures all have equal transverse conductance s, the elec-
tric field magnitude is uniform throughout each of the fractures
and varies between fractures in proportion to the cosine of ver-
tical deviation angle, resulting here in a maximum electric field
magnitude of (+1V — (-1V)) /10m = 0.2 V/m.
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3D electrostatic potential
Rms(03° - 02D) - 1 x 1O-8 v = 1V

2D slice perpendicular to fractures
 0 V/m
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Figure 6-12. (left) Rendering and benchmark problem setup for
second electrically conducting (s = 1 S) 3D fracture network in
"air" (a = 1 x 10-12 S/m ) where the fractures fully connect all
6 sides of the modeling domain, retaining spatial invariance in
one direction as was done in the previous example. Hence the
fracture network can be reduced to a 2D problem. For clarity,
only the discretized fractures are shown, where the air region
between fractures (not shown) is discretized by unstructured
tetrahedral elements. See text for further details. Potentials
within the fractures computed by the 3D HiFEM algorithm (color
coded) show a rough linear dependence on the vertical coordi-
nate and agree with the 2D network solution to an RMS error of
approximately 1 x 10-8 V. (right) Two-dimensional cross section
through the middle of the volume shown on the left showing
the magnitude of the potential gradient (electric field) within the
fractures as calculated by the 3D HiFEM algorithm. In contrast
to the previous benchmark, the presence of laterally connected
fractures with "no-flow" boundary conditions results in a com-
plex distribution of electric field where the magnitude within
a given fracture is no longer necessarily uniform, but instead
is uniform only along segments defined by fracture intersec-
tions. In some cases, this magnitude (0.24 V/m) can exceed that
of the background vertical electric field 0.2 V/m. As expected,
fractures segments connected to the lateral sides of the model
domain are equipotential surfaces and thus have zero electric
field in accordance with the imposed homogeneous Neumann
boundary condition at their endpoints.

115



7. WELLBORE INTEGRITY MODELING
WITH HIERARCHICAL FINITE
ELEMENTS

7.1. ABSTRACT

Electrical responses in the vicinity of energized steel-cased well sources offer a great potential to
monitor induced fractures. However, the high complexity of well-fracture-host models spanning
multiple length scales compels analysts to simplify their numerical models due to explosive
computational costs. This consequently limits our understanding regarding monitoring
capabilities and the limitations of electrical measurements on realistic hydraulically-fracturing
systems. Here, we utilize the hierarchical finite element approach to construct geoelectric models
where geometrically-complex fractures and steel-cased wells are discretely represented in 3D
conducting media without sacrificing the model realism and the computation efficiency. We
present systematic numerical analyses of the electrical responses to evaluate the influences of
borehole material conductivity and the source type as well as the effects of well geometry,
conductivity contrast between fracture and host rock, source location, fracture growth and
fracture propagation. The numerical results indicate that the borehole material property has a
strong control on the electrical potentials along the production and monitoring wells. The
monopole source located at a steel-cased well results in a current density distribution that decays
away from the source location throughout the well length whereas the dipole source produces a
current density that dominates mainly along the dipole length. Moreover, the conductivity
contrast between the fractures and host does not change the overall pattern of the electrical
potentials but varies its amplitude. The fracture models near different well systems indicate that
the well geometry controls the entire distribution of potentials whereas the characteristics of the
voltage difference profiles along the wells before and after fracturing are not sensitive to the well
geometry as well as the well in which the source is located. Further, the hydraulic-fracturing
models indicate that the voltage differences along the production well before and after fracturing
have strong sensitivity to fracture growth and fracture set propagation.

7.2. INTRODUCTION

Hydraulic fracturing has been a primary approach for enhancing oil recovery in tight reservoirs
and increasing thermal efficiency of geothermal resources. Monitoring fracture states and fluid
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migrations is vital for all phases of fracturing to optimize injection operations. Electrical
conductivity is an important geophysical metric to assess reservoir properties that is governed by
porosity, power fluid type, and saturation (Revil and Glover, 1998; Slater and Lesmes, 2002;
Lesmes and Friedman, 2005). Due to its sensitivity to hydraulic properties, electrical methods are
often used to characterize and monitor time-varying hydraulic states of subsurface. Although
traditional electrical surveys are practically limited to shallow investigation depths due to Ohmic
losses of the injected electrical current, deep investigation depths have become feasible by using
steel-cased boreholes as electrical sources, which channels the current into greater depths along
well trajectory. The concept of using energized steel-cased infrastructure sources is not limited to
reservoir assessment (e.g. Daily et al., 2004); has a broad spectrum of use including monitoring
fluid flow in geothermal reservoirs (e.g. Ushijima et al., 1999), tracer movements (e.g. Ramirez
et al., 1996), near-surface contamination (e.g. Rucker et al., 2011), saltwater intrusion (e.g.
Ronczka et al., 2015), and CO2 injection (e.g. Ramirez et al., 2003).

Highly conductive, buried metallic infrastructures (e.g., well casing, pipes, tanks) have strong
electrical response interspersed with the signal of interest and often dominating over a large
spatial footprint (Fitterman, 1989; Fitterman et al., 1990) which strongly requires to incorporate
their geometric and electrical properties into modeling as realistic as possible for accurate model
validations. To address the problem of how to simulate the electrical response of long electrodes
in the DC limit, several approaches have been proposed. Rucker et al. (2010) approximates a
metallic well casing as vertically stacked rectangular cells in conjunction with a surface point
electrode; however, the numerical solution reportedly has inaccuracies when the contrast is large
at the well boundary (e.g. You and Liu, 2005; Kafafy et al., 2005). Riicker and Giinther (2011)
introduced an electrode model that can accommodate the arbitrary (non-point) electrode shapes
where the interior of the electrode is not discretized; on the other hand, the effects of metallic
infrastructure not used as a source can not be incorporated into the overall solution. Further, long
electrodes can be represented as connected nodes via the shunt electrode model where the
corresponding nodes are connected with shunt conductances (Wang et al., 1999; Zhang et al.,
1995, 2014; Ronczka et al., 2015). Alternatively, metallic infrastructures with known location and
dimension can be represented as lines or surfaces in the model and their approximate effects can
be removed during inversions by superimposing the partial solutions based on the assumption of
infinite conductivity (Johnson and Wellman, 2015). These two latter approaches have advantages
of reducing the mesh discretization for wellbores but are more problematic for discrete fractures
in hydraulic-fracturing simulations.

Along with metallic infrastructures, induced fractures whose lengths are significant enough and
not statistically homogenized over a representative volume element are needed to be discretely
defined in modeling with their explicit sizes, apertures and orientations. Considering the
insignificant length scales and the numbers of manmade infrastructures and fractures over the
field of interest (such as basin scale), it is a challenging modeling task to represent them in a
single model due to the computational cost raised from the need of dense mesh refinement.
Several advances have been proposed by researchers to economically achieve a solution for such
multi-scale models. One of them is the equivalent resistor network approach where thin
conductors can be represented as edges and facets in Cartesian meshes (Yang et al., 2016); on the
other hand, the solution is obtained by only volume-based conductivity cells. Another proposed
approach, called discontinuous Galerkin frequency-domain method, consider thin conductors as
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subdomains and treats the surface boundaries that correspond to fractures or boreholes by
imposing impedance transition boundary condition (Sun et al., 2017). Nevertheless, none of the
above approaches easily incorporate a high number of geometrically-complex fractures and
wellbores simultaneously without special treatment at boundaries and without explosive mesh
refinement and computational effort. In the work described here, "Hierarchical Finite Element
Methoe (Hi-FEM) is used to deal with highly-complex hydraulic-fracturing models (Weiss,
2017). The method reduces the insignificant dimensions of planar- and curvilinear-like model
features by translating them into integrated conductivities; thereby allowing one to represent
fractures and steel casings with facet- and edge-based electrical properties while still enabling
cost-effective simulations and inherent solutions at conductive discontinuities without enforcing
boundary conditions.

Using steel well casings as long electrodes provides is one way to monitor fractures without
disturbing the injection operations. A solid monitoring strategy, capable of detecting and
monitoring fractures, is therefore desirable. Unfortunately, due to the numerical challenges just
discussed, the realism and complexity of "real-worlcr models are often compromised. Here, to
better understand the capabilities of electrical responses on fracture monitoring, we evaluate using
Hi-FEM the electrical signatures of fractures near energized well bores considering various
realistic hydrofracturing models. First, we start with examining the effects of borehole material
conductivity (steel casing vs. no casing) and the source type (dipole vs. monopole) on the
distribution of electric potentials in a homogeneous medium. Then, three representative
multi-well systems are considered to better understand the influence of well geometry on the
electrical responses of fractures. Moreover, the scenarios with various parameters such as
conductivity contrast, source location, fracture size and fracture propagation are evaluated
regarding fracture detection and monitoring.

7.3. MODELING - Hi-FEM APPROACH

The Hi-l-EM method is a finite element-based approach that recognizes the geometric hierarchy of
a discrete unstructured computational domain and efficient representation of thin model features
via translating them into their corresponding integrated material properties. The hierarchic
concept renders flexibly the material properties to be defined on each dimensional component of
an volumetric cell within a tetrahedral mesh (Figure 7-1a); thereby it drastically reduces the
degree of freedom, mesh requirement and computational cost. For such complex multi-scale
models that possess a high number of geometrically-complex thin fractures and collinear wells in
a large scale heterogeneous medium, fractures and wells can be discretely represented as 2-D
planes and 1-D lines in the 3-D host medium, and their electrical properties can be defined over a
set of connected facets and a group of connected edges, respectively (Figure 7-1b).

Adopting the -Vve sign convention to simplify the finite element analysis that follows the electric
field E = Vu in the electrostatic limit, within a conducting media a due to a steady electric
current density J, , is governed by the Poisson equation,

—V (a Vu) = V Js,
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where u is the electric scalar potential and a is the electrical conductivity function. To represent
the material properties at each dimensional component of a finite volumetric element, the
electrical conductivity is introduced as a composite function in the finite element analysis (Weiss,
2017)(Figure 7- 1 a):

Nv NF NE

a(x) = E 6eg ev (x) + E S egiFe (X) + E tegiEe (x),
e=1 e=1 e=1

(7.2)

where Nv, NF and NE denote the number of volumes, facets and edges in the finite element mesh,
respectively. ae is the electrical conductivity of tetrahedron e (S/m), se is the
conductivity-thickness product of facet e (S, conductance) and te is the the product of
conductivity and cross-sectional area (S.m) of edge e (Figure 7-1a). The hierarchical, rank-2 basis
functions in Eq (7.2) are given by

diag(1, 1, 1), 
1 if x E volume etyv,x\ =
0 otherwise

= diag(0, 1, 1)e 
1 if x e facet e

0 otherwise

and

(7.3)

(7.4)

wEe (x
) = diag(1, 0, 0)e 

1 if x e edge e
(7.5)

0 otherwise

where the subscript e of the diagonal tensors denote the local principal axis reference frame
defined by the orthogonal unit vectors. The unique definition of electrical conductivity via basis
functions with proper orthogonal vector directions enables the conductivity to be strictly local
without imposing any boundary condition at conductivity discontinuities. As a result, a composite
element-stiffness matrix is obtained in the finite element analysis that can be written as

NV NE

K = 6eKe4 + e3 seK + teKe2
e=1 e=1 e=1

(7.6)

where K4e is the 3D element-stiffness matrix (4 x 4) of eth tetrahedron, Ke3 is the 2D
element-stiffness matrix (3 x 3) of eth facet and Ke2 is the 1D element-stiffness matrix (2 x 2) of
eth edge. Finally, the global form of the linear system of equations are then constructed as in the
traditional finite element analysis and can be given as follows:

Ku = b. (7.7)

The solution of the Eq (7.7) is obtained iteratively by using a Jacobi-preconditioned conjugate
gradient (J-PCCG) solver (Weiss, 2001, 2017). Benchmarks, convergence behaviors and other
applications of the Hi-FEM approach can be found in Weiss (2017); Weiss et al. (2018);
Beskardes and Weiss (2018) and Beskardes et al. (2019).
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7.4. THE EFFECTS OF WELL MATERIAL AND
SOURCE DESIGN

We begin by examining the effects of steel casing and the influence of the source design on the
current density leaked into the surrounding homogeneous medium. A 0.01 S/m homogenous
medium with two vertical steel-cased wells is considered (Figure 7-2). Both wells extend 2 km
and a dipole source with 50 m length is used to energize the wells. The well casing conductivity is
106 S/m. The radius of the well is 0.1 m and the wall thickness is 0.025 m which corresponds to
casing conductance of 1.37 x 104 S. Note the absence of magnetic susceptibility in the governing
electrostatic Eq (7.1), meaning that the time-invariant E field is independent of the magnetic
properties of steel. Four combinations of steel-cased and noncased wells as well as three different
source locations are considered. The resulting potential distributions (Figure 7-3) clearly indicate
the dominating effect of steel casing displaying completely different patterns of potentials. The
well material is particularly important for the well in that the source is located. On the other hand,
both well material and source location controls the overall resulting potential pattern (Figures 7-3
and 7-4).

In addition, we also consider different source designs along a steel-cased well located in a
homogenous medium. The conductivities of the well and the host are set to be the same with the
model shown in Figure 7-2. The results in Figure 7-5 describe the borehole potential and the
current density profiles due to a monopole source as well as dipole sources with different lengths.
The longitudinal density along the casing is calculated as teE. The monopole source distributes
the current along the entire casing exhibiting a linear decay from the source location, whereas
dipole source yields a higher strength of current density through the length of dipole source. The
increasing length of dipole source decreases the strength of current along the length of dipole
source. The results indicate that the use of dipole source is more suitable to deliver higher current
into a specific zone of nearby formation and the length of the dipole is a control on the strength of
current. In addition, the results suggest that there is no dependence of the current strength on the
ratio between the length of dipole source and the length of well.

7.5. MONITORING FRACTURES VIA ENERGIZED
WELL SOURCES

To examine the electrical signatures of fractures due to energized steel-cased wells, we consider
scenarios with different conductivity contrasts, well geometries, source locations as well as
fracture growth and fracture set propagation.

7.5.1. Conductivity contrast

The effect of conductivity contrast between surrounding rock and fractures is examined via a
lateral well casing with five regularly-spaced fractures. The casing vertical length is 750 m and it
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extends horizontally 1000 m in a 0.01 S/m host medium. The first fracture is located at 480 m and
at 750 m depth, and the fracture separation is 10 m. The major and minor radii of the fracture
ellipses are 50 m and 20 m, respectively. The well casing conductivity, radius and wall thickness
are the same with the model in Figure 7-2.

To examine different conductivity contrasts, by keeping the well conductivity fixed, the composite
conductivity function (Eq (7.2)) can be normalized by the host conductivity as follows:

Nr NE #
_ x 3 L no,,F+ E  te  tee

e= 1 e-1 ahost
and Jsi--> Js/ ahost (7.8)

where h is the fracture aperture and the conductivity contrast between fracture and host is

= AcTe/ahost. Using Eq (7.8), the electrical potentials for the conductivity contrasts from 10° to
106 are simulated. Figures 7-6a and 7-6b shows the potential distributions when ti = 10° and 103.
The overall pattern of potential for both contrasts is quite similar except near the fractures. The
higher contrast results in higher potential on the fractures. The results in Figure 7-6c, compare the
voltage differences along the well casing before and after fracturing. The increase in conductivity
contrast between the host and the fractures indicate higher voltage difference along the casing
shifting the profiles up; however, the shift in amplitudes becomes gradually smaller while contrast
increases.

The anomaly due to the fracture set (centered at 500 m at 750 m depth) can be seen as a higher
potential difference on the borehole profile and is not significantly affected by the contrast level.
The results indicate that the contrast between the host rock and the fractures controls the
amplitude but not the shape of the potential distribution and its effects becomes less significant for
very high contrast levels.

7.5.2. Well geometry and source location

Three representative multi-well geometries are considered: lateral, multi-lateral and multi-vertical
wells (Figure 7-7). The well casing conductivity, radius and wall thickness are the same with the
model in Figure 7-2. Each model has five equally-spaced discrete fractures with 10 m spacing.
The conductance of the fracture planes is 1 S, and the major and minor radii of fracture ellipse are
50-m major and 20-m minor, respectively. The first fracture is located at 480 m in the horizontal
direction at 750 m depth except the multi-vertical well model where the fractures are placed at
500 m depth. This distinction is done purposefully to examine whether the fractures located at the
shallow arm of the multi-vertical well system has any influence on the current that flows towards
the deeper arm. Besides, another important point to investigate is whether it is possible to detect
fractures through a monitoring well. To examine the influence of the source location, we consider
the cases when the source is located in the production well as well as the monitoring well (Figure
7-7).

Figure 7-8. compares the resulting potential distributions over different well geometries when the
100-m dipole source is located in the production well. The electrical potential decays away from
the conductive wells. The results clearly indicate that the potential distribution is strongly
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controlled by the well trajectory as well as where the dipole source is located along the well. In
addition, the potentials tend to surround the highly-conductive monitoring well. Figure 7-9 shows
the potential distributions for different well geometries in case the 100-m dipole source is located
in the monitoring well. In this case, the significant difference is the anomalously high potentials
along fracture planes regardless of the source location.

Figure 7-10 shows the voltage difference profiles along production and monitoring wells before
and after fracturing. The voltage difference profiles along the production well for both source
locations (Borehole A, black and red solid lines) and for all three well systems show the elevated
values corresponding to the location of the fracture zone. This indicates that the shape of the
electrical signature of fractures along the production well has no sensitivity to the geometry of
wells as well as the source location. Their only effect is the change in the amplitudes. On the
other hand, regardless of the source location, it is not possible to measure an indicative electrical
response along the monitoring well corresponding to the fracture locations. Moreover, in case of
parallel lateral wells, the voltage differences along the monitoring well for both source locations
are different from those on multi-lateral and vertical wells (Figure 7-10a, black and red dashed
lines). Rather than a smooth decay, the profiles first show a smooth decay and then an exponential
increase; however, the locations of the zero voltage difference for both source locations does not
correspond to the location of fracture zone (Figure 7-10a). In addition, in case of the
multi-vertical wells, the voltage difference profiles along the monitoring well for both source
locations indicate no characteristic difference suggesting that the depth of fractures relative to the
monitoring well has no influence on the resulting voltage difference along the monitoring well
(Figure 7-lOc).

7.5.3. Fracture growth

The multi-lateral wells shown in Figure 7-7b are chosen to examine the effects of fracture growth.
We consider the base fracture size as 50-m major and 20-m minor radii for comparisons. The
cases where the fracture sizes are R, 2R, 4.5R and 5R where the fractures reach to the monitoring
well, are examined. Figure 7-11 shows the casing voltage difference (post- and pre-fracturing) for
different fracture sizes and for different source locations where the source is placed in the
production well (a) and in the monitoring well (b).

Figure 7-11a indicates that while the fracture size increases perpendicular to the casing, the
voltage difference gradually increases along the entire well system and the fracture zone is
consistently significant with the elevated values along the production well profile for both source
locations unless the fractures do not intersect with the monitoring well (except the case of fracture
size 5R). Moreover, the monitoring well profiles due to different source locations tend to behave
differently such that the source in the monitoring well results in the change in the decay rate of
exponential decays of the voltage difference more rapid than those resulting from the source in
the monitoring well, consequently resulting in coalescing the profiles roughly 400 m away and the
indistinctive values at larger horizontal distances (such as Figure 7-1 lb, sizes 2R and 4.5R).
Probably, this is because of the sensitivity of the source in the monitoring well to the approaching
fractures.
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When the fractures reach the monitoring well, the voltage difference profiles (in absolute value)
along the production well for both source locations show an anomalous increase implying the
location of the fracture zone higher than those for smaller fracture sizes (Figure 7-11, black solid
lines). Besides this similarity, the profiles suggest two different behaviors for the different source
locations. In case of the source in the production well, the potential difference along the vertical
section of the well system is lower than that of the case with size 4.5R (Figure 7-11 a, black solid
line) whereas the vertical section has the lowest values in case of the source in the monitoring
well (Figure 7-11b, black solid line). Furthermore, the voltage difference profile along the
monitoring well in case of the source in the production well (Figure 7-11 a, black dashed line) first
indicates a rapid decay and subsequently an increase until where the fractures are located; on the
other hand, the profile in case of the source in the monitoring well shows no decay and solely an
increase at the location of fractures exhibiting a completely similar behavior with the production
well profile (Figure 7-1 lb, black dashed line). This suggests that even though the profiles along
the monitoring wells in case of different source locations show different behaviors and
amplitudes, both signifies the fractures as an increase at the fractures location. Note that the
potential distributions along the fracture ellipses due to different source locations are quite
distinct resulting from different distances from the source to the center of the fractures (Figure
7-12). This may explain the reason of the different characteristics of the profiles (Figure 7-11,
black dashed lines). The results suggest that the electrical anomaly of fractures is significant on
the voltage difference profiles of the monitoring well only if the fractures are in contact with that
well; in other words, for multi-lateral wells, monitoring fractures from a monitoring well can be
only possible if fractures reach the monitoring well.

7.5.4. Fracture set propagation

The electrical indication of fracture set propagation is investigated via a multi-stage
hydraulic-fracturing model in a homogeneous host rock (Figure 7-13). The properties of the
multi-lateral wells are set to be the same with that shown in Figure 7-7b. A monopole source is
located at 450 m horizontally. The fractures are circular with uniformly-distributed radii (20 m,
50 m) and the first fracture is located at 480 m. Four fracturing stages are considered; each stage
has five additional fractures with a 10 m separation. The results described in Figure 7-13b
indicate that the increase in the number of fractures perpendicular to the production well result in
larger voltage differences along both wells. The monitoring well does not give an electrical
indication regarding fracture locations except the increase in voltage difference along the entire
well length; on the other hand, the voltage difference along the production well shows an
anomalous increase in voltage difference with gradually increasing widths related to the
propagating fractures. When the source is placed in the monitoring well, the same profiles are
obtained with lower amplitudes; therefore, they were not herein presented.
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7.6. CONCLUSION

We present the numerical modeling results of the electrical responses of fractures due to
energized steel-cased well sources as a function of various well and fracture properties. The
effects of the well material property (steel casing vs. no casing) and the source type (dipole vs.
monopole) on the resulting electrical potentials have been first considered. The different wellbore
materials result in significantly different patterns of potential distribution and thus different
borehole potentials for the wells that host the electrical source as well as the wells that are used
for monitoring. Whereas the monopole source distributes the current density that decays from the
source location along the entire well length, the dipole source provides a focussed current density
along the dipole source length. Moreover, the amplitude of elevated current density along the
dipole source length is not directly proportional to the ratio between the source length and the
entire well length. The conductivity contrast between the host medium and fractures does not
affect the distribution of electrical potentials but controls the amplitude. While the contrast
increases, the voltage difference before and after fracturing along the well casing increases in
amplitude; however, this effect gets saturated at very high contrast levels. The results of different
multi-well systems indicate that even though the overall potential pattern is directly controlled by
the well geometry, the voltage differences before and after fracturing along both the production
and monitoring wells are insensitive to the well layout. Moreover, the choice of well in which the
source is located also does not cause any change in the characteristics of the borehole voltage
difference. The models of different well geometry and source location suggest that it is not
possible to monitor the electrical signatures of fractures from the monitoring well unless the
fractures connect with that well. When fractures intersect the monitoring well, the electrical
response corresponding to the fracture location is significant along both production and
monitoring wells.

The electrical potentials along the production well casing due to regularly-spaced, non-elongated
fractures show a smooth anomaly corresponding to the location of fractures. In addition, the
electrical potentials along the production well show a high sensitivity to the extent of fractures
perpendicular to the casing as well as the width extent of the fracture sets parallel to the casing,
which suggests a fast through-casing fracture monitoring capability on multi-branch wells. On the
other hand, monitoring through the well casing strongly depends on the health of wells. The
effects of well completion design and corrosion on the resulting electrical potentials must be the
next step of analyses to develop a complete understanding on the capabilities and limitations of
through-casing monitoring as well as to inform future measurement strategies. Furthermore, the
recoverability of these fracture properties from the smooth electrical measurements via inversion
still remains as a valid question and must be investigated in detail via further numerical modeling
studies and real data validations. Using the Hi-FEM approach, the simulations with complex
multi-well geometries and discrete fractures have been achieved with the computational times in
the order of a few minutes on a single processor. The fast forward solutions make the inversion
feasible for such complicated models; on the other hand, the parametrization of hierarchical
electrical properties and the choice of the initial mesh for the inversion process are still ongoing
research problems.
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Figure 7-1. a) Hierarchical components of material property for
a tetrahedral finite element. Volumetric electrical conductiv-
ity a, is defined over the tetrahedral element whereas the in-
corporation of the conductivity contrasts on facet and along
edge is achieved via defining them as conductance s, (S) and
conductivity-are product te (S.m), respectively. b)Hierarchical
representations of a lateral well and a single fracture in a basin-
scale tetrahedra mesh volume. Black line indicates the lateral
well that is represented as a set of connected edges, and the el-
lipse (in orange) indicates the fracture plane that is represented
in forms of a set of connected facets in the mesh. The inset map
shows a magnified view of the well and the fracture plane.
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Figure 7-2. A subsurface model with two vertical wells. Equal-
length wells are located 500 m apart in a 0.01-S/m homogeneous
medium. The black and white circles denote a dipole source.
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Figure 7-3. Electrical potential distributions near two vertical
wells (Fig. 7-2) resulting from different source locations (rows)
and different combinations of well material (steel vs. no steel,
columns). Black and white circles denote a 50-m dipole source
with 1 A and —1 A. Black wells have steel casing with a conduc-
tivity of 106 S/m and white wells have no steel casing.
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Figure 7-4. Profiles of the absolute values of the electrical po-
tentials along Borehole 1 (first column) and along Borehole 2
(second column). Each row shows the borehole voltage due to
a different source location (as shown in Fig. 7-3). Each color
indicates a different combination of well material (Fig 3a-3d) as
indicated in the legend of (c).
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Figure 7-5. Borehole potential (in absolute value) and current
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ductivity of 106 S/m due to a) a monopole source (1 A) located at
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Figure 7-6. Oblique views of electrical potential distribution for
a single lateral well with 5 fractures where the conductivity con-
trast between the fractures and the host is a) 1 and b) 103. The
lateral well extends 750 m vertically and 1000 m horizontally
(black line). The fractures with a 10 m separation are located
at 480 m-520 m at 750 m depth. c) Profiles of the absolute val-
ues of the voltage differences along the steel-cased well before
and after fracturing due to different conductivity contrasts.
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Figure 7-7. Three representative well models: a) lateral wells, b)
multi-lateral wells, c) multi-vertical wells. Well systems are lo-
cated in a 0.01-S/m host medium and extend 1 km horizontally.
The separation of horizontal wells in (a) and (b), and the vertical
separation in (c) is 250 m. Each well has steel well-casing with
a conductivity of 106 S/m. Grey ellipses with 10-m spacing in-
dicate fracture planes with a 1-S conductance. Each filled and
open circle pair in the same color denote a dipole source with 1
A and —1 A. For each well model, two different source locations
are considered; where the dipole source is located at 450 m and
550 m in Borehole A (in black) and in Borehole B (in red).
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Figure 7-8. Electrical potential distributions for a) parallel lateral
wells, b) multi-lateral wells, c) multi-vertical wells with regularly-
spaced fractures (Fig. 7-7) due to a dipole source (black and
white circle pair) that is located in the production well. First
row shows the oblique views and second row displays the cor-
responding plan views. Black lines indicate the well geometry
and fractures (on plan views only).
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Figure 7-9. Electrical potential distributions for a) parallel lateral
wells, b) multi-lateral wells, c) multi-vertical wells with regularly-
spaced fractures (Fig. 7-7) due to a dipole source (red and
white circle pair) that is located in the monitoring well. First
row shows the oblique views and second row displays the cor-
responding plan views. Black lines indicate the well geometry
and fractures (on plan views only).
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ferences along a) parallel lateral wells, b) multi-lateral wells, c)
multi-vertical wells before and after fracturing shown in Fig. 7-7.
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bars.
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8. A FRACTIONAL CALCULUS
SOLUTION TO THE HELMHOLTZ
EQUATION

8.1. SUMMARY

A growing body of applied mathematics literature in recent years has focused on the application
of fractional calculus to problems of anomalous transport. In these analyses, the anomalous
transport (of charge, tracers, fluid, etc.) is presumed attributable to long—range correlations of
material properties within an inherently complex, and in some cases self-similar, conducting
medium. Rather than considering an exquisitely discretized (and computationally intractable)
representation of the medium, the complex and spatially correlated heterogeneity is represented
through reformulation of the governing equation for the relevant transport physics such that its
coefficients are, instead, smooth but paired with fractional—order space derivatives. Here we apply
these concepts to the scalar Helmholtz equation and its use in electromagnetic interrogation of
Earth's interior through the magnetotelluric method. We outline a practical algorithm for solving
the Helmholtz equation using spectral methods coupled with finite element discretization.
Execution of this algorithm for the magnetotelluric problem reveals several interesting features
observable in field data: long—range correlation of the predicted electromagnetic fields; a
power—law relationship between the squared impedance amplitude and squared wavenumber
whose slope is a function of the fractional exponent within the governing Helmholtz equation;
and, a non—constant apparent resistivity spectrum whose variability arises solely from the
fractional exponent. In geologic settings characterized by self—similarity (e.g. fracture systems;
thick and richly—textured sedimentary sequences, etc.) we posit that diagnostics are useful for
geologic characterization of features far below the typical resolution limit of electromagnetic
methods in geophysics.

8.2. INTRODUCTION

Anomalous diffusion has been at the heart of considerable research directed at understanding
non-standard, or "anomalous", transport behavior where the mean squared displacement of
random walk particles no longer adheres to a linear relationship with time. As a result, such
systems reveal power laws indicative of sub— and super—diffusive behavior. Anomalous diffusion
can be described through random walks endowed by heavy tail distributions and can be captured
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through non-integer exponents on time and space derivatives. Fractional derivatives in space
model super-diffusion and are related to long power—law particle jumps, whereas fractional time
derivatives model sub—diffusion and reflect long waiting times between particle jumps. Such
behavior has been observed in many applications including reaction-diffusion, quantum kinetics,
flow through porous media, plasma transport, magnetic fields, molecular collisions, and
geophysics applications. We refer the reader to Metzler and Klafter (2000) for a detailed
description of anomalous diffusion, including a comprehensive list of applications. The
underlying cause for anomalous behavior in these applications is the presence of complex
structures or mechanisms that either promote sub-diffusion or super-diffusion. For instance, in
fluid flow through porous media, complex permeability fields cause sub-diffusive transport
through trapping mechanisms or solid/liquid surface-chemistry kinetics, ultimately inducing a
memory—type effect (Caputo, 2000; Deseri and Zingales, 2015). Super-diffusive responses have
been experimentally observed in diffusion-reaction system where the variance of a chemical wave
exceeds a linear temporal relationship (von Kameke et al., 2010). This is interpreted to be a result
of non—local interactions over distances beyond that to the nearest neighbors. In the
diffusion—reaction case, vortices in a chaotic velocity field introduce flow paths that exceed
standard diffusion rates.

A range of natural phenomena can be described as processes in which a physical quantity is
constantly undergoing small, random fluctuations. Such Brownian motion can be interpreted as a
random walk that, according to the central limit theorem, approaches a normal distribution as the
number of steps increases. A macroscopic manifestation of Brownian motion is defined as
diffusion whereby a collection of microscopic quantities tends to spread steadily from regions of
high concentration to regions of lower concentration. Through Fick's first and second laws,
macroscopic particle movement can be captured by the familiar diffusion equation, the solution of
which is a normal distribution corresponding to the random walk probability density. These well
known concepts provide the underpinning to investigate phenomena that violate the standard
diffusive regime. An application space which has received relatively little attention but is poised
for further exploration is low-frequency electromagnetic imaging and interrogation of Earth's
subsurface, a classic geophysical exploration technique premised on diffusive physics, through
the mobility of solid-state defects in crystalline materials and free electrons in metals, and
electrolytic conduction in fluids (Karato and Wang, 2013).

Capturing anomalous diffusion in partial differential equations (PDEs) poses considerable
mathematical and numerical challenges, particularly in the area of 1) imposing non-zero boundary
conditions, 2) validating fractional behavior for different physics, and 3) achieving computational
efficiency to realize scalable performance. In representing the fractional Laplacian operator, an
integral or a spectral definition can be considered. The choice of method however remains an open
question, especially in the presence of non-zero boundary conditions. In this paper we consider
the spectral definition and justify this choice based on the authors' previous developments.
Validating fractional PDEs against field observations, laboratory measurement, or analytic
solutions is difficult, in part, because fractional calculus development has been somewhat isolated
from engineering and science applications community. In this paper, we offer results to help
bridge that gap between the observational science and mathematics communities. In particular,
fractional concepts are applied to geophysical electromagnetics to better characterize the
subsurface and subsequently validated through field observations, as well as geophysical insight.
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A key challenge in simulating fractional PDEs is achieving computational efficiency. In our work
we pursue an approach that leverages the Dunford—type integral representation, which in the case
of the fractional Poisson equation, is computationally very attractive because the problem is easily
tranformed into an uncoupled set of classical (integer order) Poisson solves that can be computed
in parallel and then aggregated afterward for the fractional—order solution. This parallelism
however does not map to our Helmholtz implementation because of coupling cross-terms, a fact
which impacts our eventual desire to make use of adjoint-based optimization. Nonetheless, we
begin with the solution strategy in Bonito and Pasciak (2015, 2017), with its resultant Helmholtz
coupling, and augment it with the lifting (splitting) strategy of Antil et al. (2018b) for handling
non-zero boundary conditions to arrive at a unique approach to solving the fractional Helmholtz
equation, regardless of its particular application here in geophysical electromagnetics.

The aim of this paper is to explore anomalous diffusion in the context of geophysical
electromagnetics and to derive mathematical and algorithmic strategies for practical simulation
capabilities. Earth's subsurface is known to be ripe with complex geologic heterogeneity of
hierarchical structures and self—similar geometries arising from its generative petrophysical
processes and subsequent tectonic and physiochemical experiences. In many cases,
low—frequency electromagnetic energy incident upon such media is well—known to produce a
measured response incompatible with that of an "equivalent" homogeneous and isotropic
medium, or even practical approximations of piecwise—constant material assemblages. For
example, non-local electromagnetic effects due to fractures and stratigraphic layering have been
analyzed, and in some cases observed, in the context of near-surface geotechnical engineering
(Everett and Weiss, 2002b; Weiss and Everett, 2007; Ge et al., 2015) and (Vallianatos, 2017,
2018; Vallianatos et al., 2018). This perspective on electromagnetic data analysis was hugely
influenced by speculative analogy with fluid flow in porous media and the fractional calculus
framework developed therein (Caputo, 2000; Deseri and Zingales, 2015; Benson et al., 2000), and
is bolstered by a growing body of observational evidence of electromagnetic phenomena
elsewhere (e.g., the response of composite metamaterials in Elser et al., 2007). Ultimately, as
geophysicists, we are interested in detecting small scale features in the geological subsurface (e.g.
fine-scale stratigraphic laminations or regions permeated by fractures) that may aggregate into a
hierarchical "meta-material", but our interest is tempered by practical necessity, to avoid the
detailed and computationally explosive discretization required to represent each of them in a
given numerical simulation. To mitigate this problem, we propose to dispense with the equisite
discretization just described and replace it by a piecewise blocky medium endowed with a
non—local response captured through a fractional space derivative in the material constitutive
relation. This is similar to prior approaches for studying anomalous diffusion in hydrology
(Caputo, 2000) and geophysical electromagnetics (Everett and Weiss, 2002b; Weiss and Everett,
2007; Ge et al., 2015), where, instead, a time—fractional derivative was considered. The challenge
here is deriving a solution to the space—fractional Helmholtz equation, a task not obviously suited
to the Fourier/Laplace spectral approach readily adaptable for its time—fractional counterpart
(Everett, 2009; Ge et al., 2015).

Our main contributions consist of the following: 1) deriving fractional Helmholtz by introducing
a fractional space derivative into Ohm's law to account for non-local conductivity and recognizing
that the solution process for this fractional PDE requires a decomposition to separate boundary
conditions on the fractional Laplacian operator; 2) implementing computationally efficient
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methods through a combination of spectral characterization of the Laplacian, finite element
discretization, and a Dunford—type integral representation, followed by a reformulation allowing
for sparse, scaled Jacobians with much improved conditioning; and 3) validating EM behavior
through exemplar problems in magnetotullerics. The remainder of the paper is organized by first
deriving the fractional Helmholtz equation through a fractional gradient relationship between the
magnetic field and the underlying electric conductivity. Next the fractional Helmholtz equation
with non-zero boundary conditions is decomposed to separate non-zero right-hand side and
non-zero boundary conditions. The separation provides a convenient solution strategy and
leverages the Dunford—type integral approach to numerically solve one of the remaining
equations with a fractional Laplacian. After the mathematical formulation, our finite element
implementation is verified through the methods of manufactured solutions. Finally, our numerical
capability is demonstrated on a relevant magnetotullerics application. Our numerical results are
validated through field measurements and geophysical insight.

8.3. MATHEMATICAL FORMULATION

The formulation that follows consists of multiple steps. We start by motivating the fractional
derivative operator in the context of geophysical electromagnetics and define Ohm's constitutive
law in terms of a fractional space derivative, later moving that derivative to the Laplacian term of
the Helmholtz PDE. Given a fractional Helmholtz equation with non-zero boundary conditions, a
two-equation decomposition provides a grouping of boundary conditions, source terms, and
fractional operators that allow for convenient solution strategies. One equation with
non-homogeneous boundary conditions is transformed to non-fractional form by deriving the
"very weak form" so that standard solution techniques can be applied. For the remaining equation
with a fractional Laplacian and homogeneous boundary conditions, we appeal to a spectral
representation and resolvent formalism whereby the fractional Laplacian is transformed to a
summation of standard Laplacians using a Dunford—type integral with appropriate quadrature.
The solution to the final system of equations is detailed in section (8.4, Mathematical
Formulation) in which a finite element discretization of both equations results in a large and dense
coefficient matrix that requires further manipulation to achieve efficient solution performance

We start with Faraday's law in the frequency domain with the Fourier convention of time
derivatives dt mapping to the frequency domain co as dt ico and assuming constant magnetic
permeability po = 47r x 10-7 H/m:

V x E = (8.1)

relating the curl of electric field E to time variations in magnetic field H. Paired with this is
Ampere's Law, V x H = J, where J is the total electric current density — the sum of Ohmic
currents, Maxwell's displacement current iweE, and, any impressed external currents due to
natural sources or engineered antennas. Typically, for simple linear, isotropic materials the Ohmic
currents are described by the product of electrical conductivity c and electric field and at
suffiently low frequencies 6» COE Maxwell's displacement current can safely be ignored. In a
similar fashion as Caputo (2000), where he replaced the permeability in Darcy's equation with a
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time—fractional derivative, we replace the simple conductivity/field product in Ohm's law with a
space—fractional derivative. Preserving the symmetry of both positive and negative power law
jumps in the z direction for a two—sided stable diffusion process requires both positive and
negative fractional derivatives (Meerschaert and Sikorskii, 2012, p15)

a = 
2 cos ( lza) ( a 

1  
dza 
+ a a (a_az) a ) which we normalize by the factor cos ( Ira) to preserve

z 
magnitude invariance under a. As a consequence, the space—Fourier transform for this operator
maps to the wavenumber v domain as Dza i--> 1 Vla• Note that had a one—sided derivative with
Fourier mapping (±iv)a been used, the unit—magnitude prefactor (±i)a could be interpreted as
rotating the electrical conductivity into the complex plane, effectively reintroducing the Maxwell
displacement current and turning the Maxwell derivation into a mixed diffusion/wave propagation
problem rather than a strictly diffusive one. Unlike Caputo's attempt to emulate memory effects
in permeability, our hypothesis is that certain non-local conductivity properties create
superdiffusive behavior and can be represented by a spatial fractional derivative. With this
fractional Ohm's law in the low—frequency limit (and no external sources) inserted into Ampère's
law, the curl of Eq (8.1) is thereby:

V x VxE= —icopogza [aa,zE] , (8.2)

where gza is the a—order fractional derivative in the z direction and ca,, is the electrical
conductivity in units of S/ml—a. For an Earth model whose conductivity varies only as a function
of vertical coordinate z, subject to a vertically incident electric field oriented in the horizontal x
direction, the electric fields in the Earth are everywhere horizontal such that E = j'eu(z) is the
primary state variable that needs further consideration. Furthermore, for dimensional consistency
in the fractional calculus methodology described in the following section, we non—dimensionalize
with respect to the z coordinate such that z i--> C = z/z* to arrive at

d2u ( 1 ) 2_ ,

Td 7,z + lanlog
a 
[C7a,c tl(c)] = 0 (8.3)

which, after action by gr and generalization to 3D, becomes

(-00su-kiK2u(C) = 0, (8.4)

where (—Ac)5 is the fractional—order Laplacian in dimensionless coordinate C, s = 1 — 2 a and

K2 the dimensionless squared wavenumber cog) aa, (z*)2. Note that in Eq (8.3) the conductivity
cra,z possesses fractional length dimensions to retain consistency with the fractional derivative
operator gza. However, through the non-dimensionalization process transforming Eq (8.3) to Eq
(8.4) we see that the conductivity 6a4 reclaims its familiar, integer-ordered units of S/m, thus
avoiding awkward, fractional—dimensioned conductivities reported elsewhere (Everett, 2009; Ge
et al., 2015).

We observe that the fractional exponent is on the Laplacian term and in combination with the
Helmholtz term motivate the challenge of a solution strategy. An additional complication is the
need to incorporate non-trivial boundary conditions, such as special radiation or self-absorbing
boundary conditions. We address these issues through the use of linear decomposition, a Dunford
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type integral formulation and the very weak form for finite element discretizations. We write the
generalized fractional—order Helmholtz equation as

(—A)S u k2u = f in n,

u = g on F,
(8.5)

where k2 = K2 is introduced to simplify notation for our electromagnetic problem, but in fact,
transcends this particular choice of physics, and (—A)S is understood to be the spectral fractional
Laplacian operator for non—zero Dirichlet boundary conditions

\(_A), u(x) f (pk + f u (Pk dr Pk (X) ,
k=1

(8.6)

where (pk are the eigenfunctions of the Laplacian with corresponding eigenvalues (Antil et al.,
2018b, Def. 2.3) and x e 52 is the coordinate of interest. Moreover, u is assumed to be sufficiently
smooth. As it is customary in the PDE theory, we have stated this definition for smooth functions,
however by standard density arguments it immediately extends to Sobolev spaces and we refer to
Antil et al. (2018b) for details. In addition, we emphasize that when u = 0 on the boundary F, the
definition above is simply the standard spectral fractional Laplacian (—Ao)S with zero boundary
conditions (i.e., no surface integral terms in Eq (8.6)). We will omit the subscript 0 when it is
clear from the context.

Following this earlier work on fractional Poisson equation, we extend the basic approach to
fractional Helmholtz and split u into two parts (a.k.a. "life') thusly: Let v solve

(—A)S v k2 (v + w) = f in II,

v = 0 on F,

and let w solve
(-0)Sw = 0 in n,

w = g on F.

Summing Eqs (8.7) and (8.8) it is evident that u = v +w. The presence of the homogeneous
boundary condition on Eq (8.7) allows for a spectral representation of the Dirichlet
fractional—power Laplacian operator. Furthermore, it has been shown Antil et al. (2018b) that
solving Eq (8.8) is equivalent to solving the standard, integer—power Laplacian equation in the
very—weak sense (c.f. Berggren, 2004; Lions and Magenes, 1972), which in the case of smooth g
is simply the more—familiar weak sense. A simple algebraic manipulation of the spectral
decomposition results in a Laplacian with integer exponents (see Theorem 4.1 and the subsequent
proof in Antil et al. (2018b) for additional details). Hence, we may replace Eq (8.8) with the
following:

(8.7)

(—A) w = 0 in SI,

w = g on F,

which, when solved simultaneously with Eq (8.7), yields the solution to the original Eq (8.5).

(8.8)

(8.9)

To solve Eq (8.7), we follow others (e.g. Bonito and Pasciak, 2015; Antil and Pfefferer, 2017) in
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using spectral analysis of linear operators and resolvent formalism. Specifically, we start with the
Kato (1960) definition of fractional powers for linear operators (Theorem 2 and supporting proof)
and simplify by setting Kato's A, coefficient to zero. This definition due to Kato coincides with Eq
(8.6) when the function values are zero on the boundary, as in this case the surface integral over r
vanishes which is indeed the case in Eq (8.7). After a change of variable, the Kato definition
results in a symmetric integral, which is approximated through quadrature as

(—A)
„, 
= 

sin sz fe's 

,o
e

1_s 
(9 — A) 

(\, , . , _1

— 
D' dy,

N±sin s
M E e(1—s)yE (eyt A)—1

f=-N-

(8.10)

where the quadrature nodes are distributed uniformly as yi = mt. Accuracy of the quadrature
representation of this continuous integral is a function of the constants m, N+ and N+ and has
been shown to be exponentially convergent (Bonito and Pasciak, 2015). The constants are chosen
such that the quadrature error is balanced with the error in the spatial discretization of Eq (8.7)
(c.f. w = 0 case in Bonito and Pasciak, 2015). In the case of a finite element solution with linear
nodal basis functions on the unit interval and node spacing h, they are

2

m = N+ = [ 
ln 4s m2

2

and 1\1+ = 
[4(1 — s)m2 •

(8.11)

The use of the "ceilinr operators IN in Eq (8.11) ensure N+ N+ are integer valued, as
required.

We remark that in using Eq (8.10), we avoid the costly (and in many cases, inaccurate)
precalculation of the eigenspectrum for the Laplacian over an arbitrary spatial domain n with
Dirichlet condition ulf, = g. Even in cases where calculation of the eigenspectrum bears an
acceptable computational cost, there still remains the outstanding question of just how much of
the spectrum is required for computing the Laplacian by this method to acceptable accuracy. For
these reasons, our Eq (8.10) is far more practical.

Rewriting Eq (8.7) as v — (—A)—S k2(v w) = (—A)—s f, we may write v as a Kato—style
expansion

sin SIT AT+

V = m E e(l+s)Yeye

and equate each of the terms to arrive at the coupled equation

ve (eye A)-1 k2 (v w) = (eye A)-1f,

or

(8.12)

(8.13)

(eYe — A) ve — k2 (v w) = f. (8.14)

Observe that there are N+ +N+ + 1 of these equations and that the ,eth equation fully couples the
function ye into w and all remaining functions yew of the expansion Eq (8.12). Enforcement of
the modified boundary condition ye = 0 guarantees enforcement of v = 0 via Eq (8.12). Hence,
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with the inclusion of Eq (8.9), we have the complete differential problem statement consisting of
a coupled system of N- +N+ + 2 equations with unknown functions vAr-,... ,vN+,w over the
domain n.

8.4. NUMERICAL IMPLEMENTATION

The method of solution for Eqs (8.9) and (8.14) (including corresponding boundary conditions) is
to first transform the differential problem statement into an equivalent variational problem
statement for the appropriate infinite dimensional function spaces and then approximate its
solution by the optimal one, in a Sobolev norm sense, taken from finite dimensional space of
linear, nodal finite elements over some discretization. In doing so, we introduce the test function
4.e and construct the weak form of Eq (8.14) for all from -N- to N+ :

fn(-4tAvt+e-YE k2 g.,(v w)) cif/ = f 4ef dS2, (8.15)

recalling that v is given by the expansion Eq (8.12). The test function C is used in the weak form
of the Laplace equation (8.9) as,

VC • Vw = O. (8.16)

Combining the left hand sides of Eqs (8.15) and (8.16), the bilinear form A(., .) is therefore given
as

IV+

A(ge} , c; {10 ,11/) = J (v4., • vv, + eYe — k2 (v+ w)) dc/
f=-N-

VC • Vwdfl,

the combined right hand sides are denoted as

1V+

F (-gel )c) f &cm,
t=-N-

(8.17)

(8.18)

and v is understood to be expanded in terms of vt according to Eq (8.12). The variational problem
statement equivalent to the differential problem statement in Eqs (8.9) and (8.14) is therefore:
Find {ye} E V0 ; w E V, such that

A(gel, c; 04)) = F (gel,C) vgf},C E vo, (8.19)

where V is the space of L2 functions on 52 with first order weak derivatives also in L2 of 52 and
inhomogeneous Dirichlet boundary conditions Eq (8.8), and Vo c V taking homogeneous
boundary conditions as in Eq (8.7). The next step is to choose a finite-dimensional space Vh C V
from which the approximate solutions vh v and wh w will be drawn. To further simplify
notation we will drop the h subscript and only re-introduce it as needed in relation to the true
(weak) solutions v and w.
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Let 01 (x), 02(x) , . . . ,ON(X) be the basis functions in Vh as a function of spatial coordinate x, which
in our implementation will be linear, nodal finite elements . We write in bold the column vector (fr

of basis functions (01, 02, , ON)T , and ve = 1/11)T . By construction, it follows that

ve (x) = T =EliV_10i(xM. Likewise, 4,, (gi,o,...,g7)T and w = (wl , w2, , AT)T yield

g,, 4,0 and w = OTw, respectively. As such, construction of the linear system Eq (8.19)
requires the following block matrices built by volume integration of the basis functions and their
spatial derivatives:

K = f (VO)T (VO) cig2, M1 = f OPT clQ, and M2 = - I k2 00T c1S2 (8.20)

where the integrands are understood to be outer products, each yielding a symmetric matrix of
dimension N x N. To simplify notation, introduce the coefficients = eYt-N- and
= (sinsz) m e(1-s)Ye-N- , matrix Ae = K ceMi 042, and sum L = N- + N+ so that we

may compactly write A(gel , C; {ve} , w) as

/ AO dl M2 d2 M2 • • • dLM2 M2 V _N-
d0 M2 Al d2 M2 • • • dLM2 1\17 V1-N-

d0 M2 dl M2 A2 ... dLM2 M2 V2-N-(4 T N 4NT+ cT

dip M2 dl M2 d2 M2 • " AL M2 VN+
0 0 0 • • • 0 K

Lastly, the right hand side of Eq (8.19) follows as

(4T N NT ± cT )

f

f

f

f

(8.21)

(8.22)

with column vector f = (I) f dS2. In equating Eq (8.21) with Eq (8.22) as required by the

variational problem statement Eq (8.19), we see that the coefficient vector (4 T NT + CT) is
common to both the left and right hand sides, and may therefore be divided out, thus leaving a

N (L + 2) x N(L + 2) system of linear equations for the unknown coefficients (vTN_ • • • vNT+ wT

which holds for all functions gel , E Vh. Upon solution of the linear system, aggregation of the
coefficient vectors ve according to Eq (8.12) plus the vector w completes the sum v w, which we
recognize as the discrete, approximate solution to the original differential equation (8.5).

Because the matrix in Eq (8.21) is complex-valued, large and nonsymmetric, the solution strategy
for the linear system equating Eq (8.21) and Eq (8.22) must be carefully chosen for scalability
and economy of compute resources. As such, we solve this linear system using stabilized
bi-conjugate gradients (van der Vorst, 1992): The algorithm is easily parallelizable; has a
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minimum number of working vectors; and requires only two matrix—vector products per iterative
step. The latter is especially important for reducing computational resource burdens because these
products can be computed cheaply and quickly "on the fly" as needed and without explicit storage
of entire system matrix. Notice, however, that the matrix in Eq (8.17) is block dense and a large
number of floating point operations is required for a single matrix—vector multiply — operations
which may significantly increase the time required to perform the multiplications. To remedy this,
we modify the variational formulation Eq (8.19) to include the function v in addition to the
vectors ve and w, and augment A (.) by weak enforcement of the compatibility expansion Eq
(8.12) between vectors vt and v. That is, in addition to {ye} and w, we introduce the additional
unknown v and find { vt} ,w and v such that

where

and

A(ge},C,11;{-10,w,v) = F (ge} , c ,71) vge},c, and rl ,

-*gel • c ,r1;{vd ,w,v) =
N±

E ft2(v4.e•vv,+ eY ' g.eye — k2 4,e (v + w) + V c • V w) an
f=N-

f=-N-

Sill SIr
m 
i 

e
(i_s)ye In n vim. + j ri vd52

rc . Q.

N±

f (gel , •r1) = E, f 4.ef dn.
t=N- n

The resulting sparse linear system is thus,

M2 M2 \ / V_N- \/ AO 0 • • 0 / f \
o Al 0 o 1\42 M2 V1-N- f

V2-N- f1v12 lvI2
o 0 AL_1 0 M2 M2
0 • • • 0 AL M2 M2 VN+ f
o 0 K 0 w 0

\ —d0M1 —c/LAll 0 M1 j \ v / 0 : 1 /

(8.23)

(8.24)

(8.25)

(8.26)

with ik,e = K+ cfM1. We refer to the sparsified system of linear equations in Eq (8.26) as the
v-formulation for the discretized, variational form of original differential equation (8.5).
Inspection of the prefactors cle from the Kato expansion, however, suggests that their exponential
decay with respect to £ may lead to ill-conditioning of the coefficient matrix in Eq (8.26) by their
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presence in the last block—row. As such, we recast Eq (8.26) as the scaled v-formulation:

/ 1-Vo
o

0
o
0

\ -M1

o 0 M2 M2 \ /

Ali 0 0 M2 M2

M2 M2

0 AL-1

0
0

k
M2

At
M2

A42
0 K 0
—M1 0 Mi / \

1/-N- \ 1 f \
Vf1- fN-
1 fV2-N-

=

vN+ f
w 0

v / \ 0 /

with k = (K + cymi) /cle and v't = vedf+N-. In the scaled system Eq (8.27), the Kato scale
factors de are implicit in the unknown vectors v't and act within block diagonal matrices "ii',e
alone.

(8.27)

As a closing remark on the theory and algorithms just described, observe that in Eqs (8.9), (8.26)
and (8.27) the solution of the scalar Laplacian equation for w is fully decoupled from the solution
for v and ye. Hence, one option for solving the full system of equations is a two—step procedure,
where first the solution for w is obtained, and then used as a sourcing term for the remaining ye
equations. We have, instead, chosen to solve the full system simultaneously. This has some
advantages. First, in looking ahead to the implementation of Robin boundary conditions (e.g. a
Sommerfeld radiation condition), we anticipate that the Laplacian equations will couple directly
into the v (or, equivalently, ve) equations, which would consequently eliminate the convenience of
solving for w a priori. We wish this coupling to modify our existing algorithm/code structure as
little as possible and therefore retain the Laplacian equation for w in the full system matrix.
Second, including the Laplacian comes at an increased cost of only N degrees of freedom on top
of the existing cost of LN for the ve equations. Because L is typically on the order of 100 or more
for adequately refined meshes (Figure 8-1), this added cost is objectively minimal. Lastly, looking
further ahead toward PDE constrained optimization where we might invert for s or cra,c, or for the
design problem (e.g. optimal sensor sensor placement), it is more convenient to create and solve
for the corresponding adjoint objects.

8.4.1. Non—locality of the fractional Laplacian operator

We next provide insight as to why equations (8.10), (8.6) are nonlocal operators. As pointed out
in Song and Vondrgek (2008); Caffarelli and Stinga (2016); Antil et al. (2017) and Antil and
Warma (2019), the spectral fractional Laplacian with zero boundary conditions can be
equivalently written as:

(—Ao)su(x) = ft2(u(x) — u(x'))<X,(x,i)dn'-ku(x)/3,(x) (8.28)

where Ars and B, are appropriate Kernel functions. One can see from the equivalent definition
that, in order to evaluate (—Ao)su at a point x E n, we need information about u on the entire
domain 0., thus making (—AO' a nonlocal operator. Moreover, let 0 be an open set contained in
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Figure 8-1. Total number of quadrature points L as a function
of Laplacian exponent s and node spacing h. Sinc quadrature
summation is over the range of indices = —N- , Ai+ .

n such that u 0 on B. Then a classical Laplacian implies —Au(x) = 0 for all x E n. However,
this is not the case when we deal with (—Ao)s. Indeed, let x e and let use the equivalent
definition Eq (8.28), since 0 on 0, we obtain that

(—A0)Su(x) = (u(x) — 4)) A's(x,i)dn'

= f (u(x) — u(i)) + f
\e, 
(-4)) ,l's(x,x')dn'

n 

= f (—u(x')) X.(x,x')c1S-2! (8.29)
n\e

which is not necessarily zero. This is unlike the local case.

8.5. NUMERICAL VERIFICATION

To verify the implementation of the fractional Helmholtz equations with inhomogeneous
Dirichlet boundary conditions we adopt the Method of Manufactured Solutions (MMS) (Roache,
1998; Salar and Knupp, 2000). In the MMS method, a proposed solution is substituted into the
governing differential equation, after which the corresponding boundary conditions and sourcing
functions are derived. Upon discretization, the recovered numerical solution is then compared to
the known analytical solution. The MMS solution used here over the interval x [0,1] takes the
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Figure 8-2. Convergence of MMS solution U = sin(27rx) + 1 for
s = 0.25 as a function of mesh size N with corresponding node
spacing (N —1)-1. In symbols is the RMS residual; black lines,
the curve h2; and in red, the total number of degrees of free-
dom in the discretized linear system (8.27). Linear system (8.27)
is solved using BiCG-STAB to a tolerance of 10-16 in RHS-
normalized residual.

following form: v = sin(27rx), w = 1 i--> u = 1+ sin(27rx). Inspection of Eq (8.9) results in setting
g(0) = g(1) = 1, whereas recognizing that sin(27rx) is an eigenfunction for homogeneous (—A)s'
results in f = ((27r)s — k2) sin(27rx) — k2 according to Eq (8.7). Hence, we have constructed for
arbitrary s the requisite source terms and boundary conditions for our posited solution u solving
an inhomogeneous fractional Helmholtz with non-zero Dirichlet boundary conditions. Note that
MMS solution u is independent of both s and k and is thus powerful test of fractional Helmholtz
algorithm

Numerical evaluation of the MMS problem just described is done using linear, nodal finite
elements with uniform node spacing for the case of s = 0.25 and k arbitrarily set to unity. Linear
system Eq (8.27) is solved to high accuracy using the stabilized bi-conjugate gradient van der
Vorst (1992) iterative scheme with simple Jacobi scaling to a tolerance of 10-16 reduction in
normalized residual. Over the range of node spacing 0.001 < h < 0.01 the MMS solution shows
the expected h2 convergence in error between the recovered finite element and known analytic
solutions (Figure 8-2) in L2(n)-norm. For reference, the size Ntotai of the linear system Eq (8.27)
grows roughly as N1-4 over the corresponding range in h, resulting, for example, in L = 629
quadrature points for N = 1001 finite element nodes and a total of Ntota,1= 631631 unknowns in
the linear system Eq (8.27). Convergence of the bi—conjugate gradient residual error as a function
of iteration count (Figure 8-3) is generally well behaved, with only minor localized excursions
from monotonicity. Furthermore, the error in simultaneously solving each of the three sets of
coupled equations — fractional Helmholtz for ye; Laplacian for w; and, compatibility between v
and ye — decreases synchronously with iteration count, with error for the compatibility equation
approximately a factor 100 less than the error for the remaining two.

Lastly, we confirm that the choice m = 1/ log /, for quadrature spacing (and by extension, the
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Figure 8-4. Convergence of RMS error as a function of quadra-
ture spacing m for the MMS problem with N =101,h = 0.01 finite
element nodes (see Figure 2). Optimal quadrature interval m*
is given by (8.11) yields RMS = 1.25 x 10-4, a value close to the
asymptotic limit when m < m*. Note the rapidly increasing RMS
error as m* < m.

number L of vi equations) is nearly optimal by examining the effect on RMS of varying m. As a
representative example, the N = 101, s = 0.25 discretization of the MMS problem is solved for a
range of m values around 1/ log /, . In this example the asymptotic limit for minimum RMS value
is achieved at m roughly 90% of its optimal value, where the asymptotic limit is driven by the
error of the finite element discretization itself (Figure 8-4). In contrast, choices of m larger than
the optimal value result in a rapidly increasing RMS, consistent with the exponential convergence
of quadrature error reported elsewhere (Bonito and Pasciak, 2015).

8.6. NUMERICAL RESULTS

Our fractional Helmholtz system is numerically demonstrated in the context of magnetotellurics
(MT). This is a geophysical surveying method that measures naturally occurring, time-varying
magnetic and electric fields. Resistivity estimates of the subsurface can be inferred from the very
near surface to hundreds of kilometers that are applied to subsurface characterization for myriad,
broad—reaching geoscience applications such as hydrocarbon extraction, geothermal energy
harvesting and carbon sequestration, as well as studies into Earth's deep tectonic history. The MT
signal is caused by the interaction of the solar wind with the earth's magnetic field (lower
frequencies less than 1 Hz) and world-wide thunderstorms, usually near the equator (higher
frequencies greater than 1 Hz). Figure 8-5 provides a conceptual diagram of MT in which an
idealized ionospheric "sheet currenr is the electromagnetic source (see Section 2) for inducing
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Figure 8-5. Overview of magnetotelluric experiment and data re-
duction. (left) Collocated time series of horizontal electric field,
measured by pairs of grounded electrodes, and magnetic field,
measured by induction coils or fluxgates, measure Earth's in-
ductive response to ionspheric source currents. (right) Time se-
ries are windowed, filtered and transformed into the frequency
domain, from which the impedance tensor is estimated, contain-
ing information on the distribution of electricical conductivity
variations in Earth's subsurface (Chave and Jones, 2012). Be-
cause high—frequency fields decay more rapidly with depth than
low frequency fields, frequency can loosely be interpreted as a
proxy for depth, and hence an impedance spectrum is a coarse
measure of the local, depth variations in electrical conductivity.

secondary electromagnet eddy currents in the subsurface. Because, in practice, the magnitude of
this source current is unknown, the fundamental quantity for MT analysis is the impedance tensor
mapping electric correlated electric and magentic fields. Computed in the frequency domain, the
impedance tensor is an estimate of the Earth "filter" rnapping magnetic to electric fields — in other
words, it is an expression of Earth's conductivity distribution. Common in preliminary MT
analysis is the assumption of locally 1D (depth dependent) electrical structure and excitation by a
vertically incident plane wave, such as described in Section 2. We adopt these modest
assumptions in our investigation of MT data — in particular, data collected by the decadal,
trans—continental USArray/EarthScope project — and find examples where MT data are consistent
with predicted impedances for a fractionally—diffusing electromagnetic Earth.

Because of the novelty in applying fractional derivative concepts to electromagnetic geophysics,
the first question that draws our attention is simply: How does a fractionally diffusing field, as
described by Eqs (8.3) and (8.4), compare to a field derived from the classical Helmholtz
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equation? To address this question we solve (8.4) on the dimensionless unit interval C E [0, 1]
with unit amplitude Dirichlet conditions u(0) = N/fi and u(1) = 0 on the horizontal electric field
and choose the dimensioned scaling factor z* = 1000 m to represent the physical domain
z e [0,1000] m. Choice of homogeneous Dirichlet condition at C = 1 is commonly known as
"perfectly conducting" boundary condition, representing the presence of an infinitely conductive
region for C > 1, but is used here strictly out of computational convenience. Scattering from this
interface back to Earth's surface C = 0 will be negligible as long as the frequency w in Eq (8.4) is
sufficiently high that the electric field at depth is essentially zero. The unit interval is discretized
with 501 evenly distributed nodes, on which the electric field is drawn from the finite dimensional
vector space of linear nodal finite elements. Hence, node spacing is h = 0.002, which, when
s = 0.7 for example, leads to N— = 318 and N± = 137 according to Eq (8.11) and a linear system
Eq (8.27) with 501(3 +N— + N±) = 229458 equations. Comparable to the error tolerances on the
BiCG-STAB solver specified previously for the MMS problem, the iterative sequence is
terminated once the normalized residual is reduced by 10-12 over its starting value.

The horizontal electric fields in Figure 8-6 show depth—dependent behavior that is clearly also
s-dependent: increased curvature in the near—surface and decreased curvature at depth in
comparison with their classical s = 1.0 counterpart. This suggests that the effect of the fractional
Laplacian in Eqs (8.3) and (8.4) over a uniform aa,c Earth model is, at first blush, in some ways
similar to that of a classical Laplacian over a layered Earth which is conductive in the near surface
and resistive at depth. However, closer inspection of the fractional response (see, for example the
s = 0.60 curves) reveals that the damped oscillations, characteristic of classical Helmholtz, are
simply not present as s decreases from unity, and instead then are replaced with a steady
non—oscillatory decay with depth.

There is a dramatic manifestation of this fractional Helmholtz response in observable
magnetotelluric data through calculation of the impedance spectrum (Figure 8-7). Amplitude of
the impedance spectrum, reported here as the familiar apparent resistivity

1 Ex 2 u 2

H
y
 = On10(e)2
z=0

(8.30)
=oPa —

WM (ku

and complex phase angle 0 of the ratio —uldo, show a clear s—dependence at frequencies above
1 Hz (Figure 8-7). Decay of the apparent resistivity as frequency approaches zero can be
understood as a consequence of the perfect electric conductor boundary condition at z = z*,
where at these low frequencies the reciprocal wavenumber K» z* and hence the apparent
resistivity approaches that of the perfect conductor, zero, in the region z > z*. Furthermore, in the
limit of zero frequency, the fractional Helmholtz equation asymptotes to the fractional Laplacian
equation (analagous to Eq (8.8)) with inhomogeneous Dirichlet boundary conditions, whose
solution has already been established Antil et al. (2018b) as equivalent to the classical Laplacian
equation, leaving the ratio —ulacu= 1, or equivalently 0 = 0.

The decrease in apparent resistivity at high frequencies when s 1 can further be understood by
examination of the electric field gradient at z = 0 (Figure 8-8). Although there is a slight decrease
in the vertical gradient of the imaginary component of electric field when s 1, the magnitude of
the real component increases dramatically in comparison to the s = 1 case. This overall rise in
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Figure 8-6. For a range of fractional exponent values s =
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(bottom) components of horizontal electric field E„ = u as a func-
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ing classical s = 1 Helmholtz. See text for additional details on
boundary conditions and scaling to the physical domain from
the dimensionless unit interval.
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vertical gradient at the air/earth interface for a fractional Earth model decreases the value of the
quotient in Eq (8.30), thereby leading to a decreased estimate of the apparent resistivity at large
frequencies.

8.6.1. Validation through USArray data

We have made progress towards validating our hypothesis of "fractional Helmholtz leading to
new geophysical interpretatioe though geophysical insight of numerical experiments. These
numerical results suggest that a uniform subsurface subject to superdiffusing electromagnetic
plane waves exhibits a high apparent conductivity in the near surface while appearing more
resisistive at depth (Figure 8-7). This is consistent with actual field data observed in the
mid—continent of the USArray footprint. In these data, apparent resistivity and phase angle
spectra from USArray MT station for KSP34 located NW of Kansas City, KS, USA are consistent
the non-local behavior as our numerical experiments (Figure 8-9). An in-depth study of the
geology in the Kansas City region would futher endorse our observations but is beyond the scope
of this paper. These field data correlations however provide further motivation to support
additional algorithmic development for fractional electromagnetics.

8.6.2. Strategies for a spatially—variable fractional exponent

An initial assumption in problem statement Eq (8.5) is the spatial invariance of the fractional
exponent s over the spatial domain S2. However, if s is intepreted to represent via non—locality
some degree of long—range correlation of underlying material properties (e.g. electrical
conductivity), then it is relevant to consider how spatial variability in this correlation is
accommodated in the architecture of the fractional calculus paradigm. In addition, variability in s
enables us to truly capture the non-smooth effects such as fractures by prescribing variable degree
of smoothness across the scales. A detailed analysis for variable s, where the authors have created
a time-cylinder based approach, has been recently carried out in Antil and Rautenberg (2018). For
a precise definition of the fractional Laplacian with variable s we refer to Antil et al. (2018a).

In the case of a piecewise constant s, a conceptually simple strategy is to decompose the domain
n into subdomains on which s is constant and impose our Kato method over each of the
subdomains Note that the solution for w in Eq (8.8) is independent of s and may be obtained
without any need for domain decomposition. Although differences in s among domains means
that the number of functions Ve-0,...,L also varies among domains, the boundary condition v = 0
on each of the subdomains ensures continuity of v, and therefore continuity of u = v
throughout n. Observe that computation of {ye} in one subdomain is independent of its
calculation in another, and hence, {ye} over each of the subdomains can computed in parallel with
no message passing or interdomain communication required once w is solved for and shared
globally throughout n. That said, several issues need to be resolved before this idea can be
defensibly implemented. First, the suggestion of zero (subdomain) boundary conditions on {ye}
needs to be physically justified. If found to be unsound, the embarrassingly parallel structure just
described will instead require interdomain communication and potentially interpolation. Second,
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Figure 8-8. Real (top) and imaginary (bottom) components of
horizontal electric field as a function of depth in a uniform
0.01 S/m Earth underlain by a perfect conductor for frequencies
f = 316,1000 and 3162 Hz, corresponding to the high—frequency
region of the magnetotelluric apparent resistivity spectrum (Fig-
ure 6) with approximate s dependent power law behavior. Curves
for classical s = 1 (heavy lines) and fractional s = 0.7 response
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evidently due to the strongly increased vertical gradient of Real
component of electric field at the air/Earth interface z = 0 for
fractional Helmholtz. Recall that from Eq (4.1) that the vertical
gradient of electric fields resides in the denominator of the of
the apparent resistivity estimator.
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Figure 8-9. Apparent resistivity and phase angle data from US-
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from the US Array: a) Apparent resisistivity spectrum based on
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Z. The similarity in the curves, especially at high frequencies,
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because the fractional Laplacian is inherently non—local, its support extends over the global
domain 52. Ensuring global extent of non—locality in the context of subdomains requires further
analysis. Lastly, function and flux continuity for a given ye within a subdomain is guaranteed; the
conditions for such guarantees, in a general sense, at subdomain boundaries have yet to be
determined. Because of these complexities, further analysis of this domain decomposition
concept is deferred to future publication.

8.6.3. Fractional time derivatives

Prior work in electromagnetic geophysics in contemplation of Ohm's constitutive law being
represented in terms of fractional calculus have focused on fractional time derivatives, rather than
the fractional space derivatives described here (Weiss and Everett, 2007; Everett, 2009; Ge et al.,
2015). Such analyses are comparatively simple in that the fractional space derivatives Do.za of (1.2)

are replaced by time derivatives Dtt3, thus modifying the complex wavenumber as
k2 = — (i0))1—Ppoc. Solutions to Eq (8.5) in layered media when s = 1 (equivalently, a = 0 since
s = 1— 1) follow the usual method of posing characteristic solutions exp(±kz) in each of the
layers, coefficients for which are determined through enforcement of boundary condition Eq (8.5)
along with continuity of u and dzu at layer boundaries. Solving this time-fractional Helmholtz
equation on the domain 52 : z E [0,z* = 1000] m with u(0) = 1 + i, u(z*) = 0 and a = 0.01
S/m(radis)—P yields a characteristic magnetotelluric response (Figure 8-10) distinct from that
obtained in the case of space—fractional derivatives s 1 (Figure 8-7). As noted in Ge et al.
(2015), imposing the time—fractional derivative in this way is equivalent to recasting real—valued
electrical conductivity c as a frequency—dependent, complex—valued conductivity a (ico)P . The
quasi—linear power—law behavior in apparent resistivity and phase angle (Figure 8-10) seen at
high frequencies (f > 100 Hz) is objectively distinct from that computed for the space—fractional
Helmholtz system (Figure 8-7) and offers an unambiguous diagnostic for discriminating between
the two. These differences have their origin in the how anomalous power—law diffusion is
captured by each. In the case of fractional time derivatives of order 1 — 0, as considered in this
latest example, the system is considered subdiffusive and consistent with an anomalously high
likelihood of long wait times between successive jumps of charge carriers in a continuous time
random walk, analogous to that suggested for fluid transport in a porous medium (Metzler and
Klafter, 2000). Instead, the space—fractional derivatives which occupy the primary focus of the
present study capture long—range interactions (spatial nonlocality) of charge carriers as a
superdiffusive system, perhaps through inductive coupling (a phenomena absent in the physics of
fluid flow in porous media). This contrast — super- versus sub-diffusion — is the essence of the
causative physics behind the different magnetotelluric responses predicted by (Figures 8-7 and
8-10).

8.7. CONCLUSIONS

We have presented a novel, practical solution to the fractional Helmholtz equation based on the
Kato formulation of the fractional Laplacian operator, a lifting (splitting) strategy to handle
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non-zero Dirichlet boundary conditions, and finite element discretization of the spatial domain
This specific finite element discretization derives from our statement of the variational problem,
from which alternative discretizations (orthogonal polynomials, wavelets, spectral functions, etc.)
offer an interesting direction for future research. Whereas the analogous Kato/lifting strategy for
solving the fractional Poisson equation leads to decoupled system of integer Laplace solves which
can be done in parallel with no inter-solve communication, solution of the fractional Helmoltz
admits no such decoupling. This leads to a large, block—dense system of linear equations upon
discretization which significantly increases the resource requirements for obtaining a numerical
solution. In response, we augment the variational problem by introducing an additional unknown
which collapses the L — 1 block coupling matrices in a given block—row into a single block
matrix, at the expense of only one additional (dense) block—row in the linear system. For typical
problems where with L >> 100, the added computational burden of this compatibility equation is
inconsequential, yet the reduction in matrix storage is significant, going from L2 to simply 2L.
Thus, a key feature of this augmented variational problem is the extreme block—sparsity of the
resulting linear system of equations, a feature which is independent of the choice of discretization
and important for efficient solution of large—scale systems. Validation of the algorithm for linear,
nodal finite elements shows h2 reduction in RMS error for an MMS test problem — demonstrating
that our formulation of the fractional Helmholtz problem does not corrupt the convergence
behavior expected from solution of integer-order Helmholtz.

We apply this formulation for fractional Helmholtz to the growing body of observational evidence
of anomalous diffusion in nature — here, asking the question, "Does the Earth, with its
incalculable geologic complexity, respond to electromagnetic stimulation in a way that is
consistent with fractional diffusion and the non—locality that is central to the differential operators
of the governing physics"? Whereas temporal non-locality of Maxwell's equations has previously
been observed as sub—diffusive propagation, the fractional Helmholtz equation studied here
describes super—diffusion by attributing fractional derivatives directly to the spatial distribution of
material properties in Ohm's constitutive law. Earth electromagnetic response is computed in the
context magnetotelluric (MT) analysis — a classic geophysical exploration technique dating back
to to middle 20th century — and comparison with the EarthScope USArray database. We find
qualitative agreement between the predicted fractional Helmholtz response functions and those
observed at a middle North American measurement site. This congruence in electromagnetic
response thereby offers an altenative interpretation of the MT data at the site, one where the
classical interpretation of a layered Earth geology with deep resistive rocks overlain by a
conductive overburden is contrasted with new interpretation suggesting complex, geologic texture
consistent with the site's proximity significant deep crustal tectonic structure.

Outstanding issues for future research therefore lie in two fundamental areas: arriving at a clearer
mapping between the value of a fractional exponent s and the material heterogeneity it's intended
to represent; and, extension of the computational tools to higher dimension with parallel
implementation, including spatially variable and/or anisotropic s values. The former may be
informed, as we've done here, by reinterpretation of existing observational data through fractional
calculus concepts, but augmented by detailed material analysis. The latter naturally feeds into
ongoing efforts in PDE—constrained optimization for material property estimation, now
augmented with the desire to recover s, too, as a measure of material complexity or sub—grid
structure. Algorithmic advances in multi-level domain decomposition (decomposition over
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physical domain in addition to decomposition over the functional blocks of global system matrix)
will also be required for full exploration of fractional Helmholtz concepts on large, 3D
domains
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8.9. APPENDIX

Faraday's law of induction equates the circulation of electric field E to the negative time rate of
change of the magnetic induction B,

V' x E= —atB. (8.31)

Assuming non-magnetic media where magnetic permeability p, is equal to that of free space
p = po = 47r x 10-7 H/m, the right hand side of Eq (8.31) can be written as —podtH, where H is
the magnetic field. Similarly, Ampère's Law equates the circulation of magnetic field to the total
electric current density, Jtot,

V x H = LA, (8.32)

which in the absence of prescribed source currents — naturally occuring or engineered — is
given by Ohm's constitutive law, a convolution of the electrical conductivity c and electric field
over both space r and time t:

Jtot = c *E. (8.33)

The convolutional nature of the empirically—derived constitutive laws of electromagnetics reflects
not only the linearity between the vector fields such as J and E, but also the fact the effect of
material properties may be non—local in time and/or space. The latter is representative of
materials with "memory", whose behavior at a given time is dependent on the time—history of the
material. This has been studied previously in the context of geophysical electromagnetics
(Everett, 2009) and motivated by observational evidence of anomalous power—law scaling (Weiss
and Everett, 2007) from an engineered loop antenna. Similar anomalous power laws have also
been observed in the context of diffusive fluid transport in porous media (e.g. Benson et al.,
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2000). In attributing the anomalous diffusion to memory effects alone, Everett (2009) defines the
spatially uniform but temporally non—local Ohm's law as the convolution

1 ft Grp EW)
(a * E) (t)  dt' (8.34)r(p) (t - t/)i-f3

where ro is the Gamma function, 6p is electrical conductivity (with fractional units for
dimensional consistency) and describes the anomalous power—law relationhip. The exact
mapping between (piecewise?) constant igp and the presumed, causative "rough geologic
medium" c remains an open research question. Nonetheless, substituting Eq (8.32) into Eq (8.32)
eliminates the magnetic field variable and introduces via Eqs (8.33) and (8.34) the term

a a  1 f (70E(t')

at 
(a * E) (t) =

at r(p) 
t 

(t-tl)1-P dt . (8.35)

The term on the right is recognized as the Riemann—Liouville fractional derivative, in time, of
order 1 — p, thusly motivated by a particular representation of Ohm's convolutional constitutive
law for consistency with observations of anomalous, fractional power law in geophysical
electromagnetics in which the governing diffusion equation posesses integer order derivatives in
space coupled with fractional-order derivatives in time.

Alternatively, an anomalous power law can also be captured through a governing diffusion
equation whose space derivatives are of fractional order and the time derivatives are integer order.
Indeed, mixed fractional space—time derivatives are now an accepted element of the mathematical
architecture for quantifying anomalous hydrologic diffusion (e.g. Benson et al., 2000;
Meerschaert and Sikorskii, 2012). To motivate the proposed fractional space derivatives, we
return to the fundamental definition of Ohm's constitutive law and write it as local in time, but
non—local in space. For the sake of notational simplicity, consider non-locality in the z direction
alone and write analagously to (8.34)

d 1 Ca,z(Z)E(Z)sgn(z — z') 

(CY *E) (z) dz F(1 — a) L
where the signum function, sgn(.), is equal to ±1, consistent with the sign of its real argument. A
couple of differences between our space—convolution Eq (8.36) and the (Everett, 2009)
time—convolution Eq (8.34) merit some comment. First, the limits of integration in Eq (8.36)
extend from ±00 and in practice would be truncated at the bounds of some model domain n under
consideration, whereas the limits on the time—convolution are truncated at time t to enforce
causality. Because of this we may further decompose the convolution into an integration over two
domains, one with z' < z and the other with z' > z:

(8.36)

a 1 fz ca,z(Z)E(Z) dz, f+°° ca,z(Z)E(2) 
(8.37)(c*E) (z) oc 

az F(1 — a) (z—e)a L (z' — z)a

Thus, unlike the causality constraint for time derivatives, the spatial convolution is free to
consider regions to both "forware and "backward" from z. The second major difference between
the proposed spatial convolution and the (Everett, 2009) time—convolution is the leading
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derivative with respect to z. However, we point out that the derivative of a convolution is a still a
convolution, nonetheless. Thus, our expression still retains the familiar linearity properties of
Ohm's law while admitting the non—locality we desire. The first term in Eq (8.37) is recognizable
(from above) as the fractional derivative of order a with respect to z. The second term, we find, is
the fractional derivative of order a with respect to —z (Baeumer et al., 2009).

Like derivatives of integer order, the Fourier transform of a a—order fractional derivative with
respect to z of a function f (z) is simply (iv)a f (v), whereas the derivative with respect to —z
yields Fourier transform (—iv)a f (v). Consequently, Fourier transform of the sum, as we have in
Eq (8.37), has Fourier transform 2 cos ( 2 az) v af(z). We thus define a fractional differential
operator za with Fourier transform Iv a for the left/right derivatives in Eq (8.37) as

o a
-e/z

1 da de'

2cos(air) dza d(—z)a) •
(8.38)

Notice that as was done previously with CTs in (Everett, 2009), the connection between the
conductivity function cra,z the underlying presumably rough geology 61eft undefined. This still
remains an outstanding research question, but before too much effort is spent in pursuit of its
answer, we argue the such answers fruitless if the governing spatial space—fractional diffusion
equation is too burdonsome to solve or yields results inconsistent with observation. It is the latter
which defines the focus of the present research.

To do so, we consider the 1D magnetotelluric problem where there is, again, a presumably rough
depth—dependent conductivity function cr (z) and the electric field is fully represented by its
horizontal component, written here as u(z). Under these simplifying assumptions, the
combination of Ampère's and Faraday's law, as decribed above through elimination of the
magnetic field, yields a simple ordinary differential equation in the co freqency domain:

u ( .

dz2

z)

 = —1°)M [Oa 'zu(z)] •

Recall and observe above that for dimensional consistency, the function cra,z necessarily has
fractional physical units of S/ml—a. This awkwardness can avoided by non—diminensionalizing
the space coordinate zi--> = z/z* where z* is taken here to be range of z in our model domain
In doing so, the fractional differential operator is written as n to represent its action with respect
to the dimensionless variable C and the classically—dimensioned conductivity 6ce, = (z*)acra,z is
introduced such that

d2U(c) 1 
2

)cic2 z
—
* 
= —iwilog:` [6a,zu(z)] •

(8.39)

(8.40)

As pointed out in the discussion preceding Eq (8.38), the Fourier transform of our differential
operator 9za is a and the same holds true for n under Ci--> v. As a consequence, the Fourier
transform g of Eq (8.40) can be written as

— 1 1/ 12g [u]+io)P4)021vIag [6cc,01] = 0,
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which invites combining the v terms to write

_11712—ag- [u] ±icomo (e)2 g- bya,cu] = 0, (8.42)

an expression in the C domain that reads

d2c114(2C) )s ± icop43 (z*)2 csoc,o(C) = 0 (8.43)( 

with s = 1 — 2 a. The three—dimensional analogue of Eq (8.43) follows immediately in the form

of a generalized fractional—order Helmholtz equation (—A)Su — k2u = 0, whose fractional
Lapacian operator and methods for working with it constitutes the bulk of the algorithic
development in the main body of the present work.
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9. CLOSING REMARKS

As described in the Introduction, the goals of this project revolved around efficient computation
of geophysical response of complex natural materials, and in particular, an assymptotic analysis
of the middle ground in length scale where the details of an exquisitely discretized Earth model
transition into an acceptable representation through a fractional calculus framework. Each of
these endmember states merited independent research in their own right and the reader is directed
to the 'Conclusion' sections of Chapters 2 through 8 to see the long list of particular
breakthroughs. That said, the main science achievements are twofold: a hierarchical material
properties representation for finite elemnet analysis (Chapter 2); and, a novel solution to the
fractional Helmholtz equation with supporting magnetotelluric evidence in the USArray database
of the United States National Science Foundation's EarthScope program (Chapter 3). While not
in the original research plan, the broad class of problems made accessible by the former made it
the natural choice as the primary computational approach for all computations requiring specific,
detailed discretizations of fine—featured models. As such, proposed A — (13 and nested meshing
concepts originally proposed were quickly deprecated in favor of the new, hierarchical scheme,
and in doing so we investigated problems in oilfield (Chapters 3-5, 7) and near surface (Chapter
6) geophysics that simply weren't previously possible. Similarly, the fractional Helmholtz
solution described in Chapter 8 is the first of its kind in the geophysical literature and
complements the previous work on fractional calculus in geosciences in two ways. Most notably,
its treatment of fractional derivatives in space — rather than previous works which dealt with
fractional time derivatives — resulted in a solution method based deeply in functional analysis
and branches of mathematics perhaps less familiar to the geophysical community. Thus, we feel
we have provided a solution to the problem at hand and made significant progress in translating
these mathematical esoterica to practical—minded physical scientists. Secondly, the fractional
Helmholtz study was bolstered by newly—found obervational evidence of Earth electromagnetic
response that is compatible with fractional calculus worldview. The database of such evidence is
small (but growing) and skeptics of the fractional calculus worldview rightly point out the
necessary distinction between causality and compatibility. Nonetheless, because the incalculable
level of geologic detail presumably captured by the fractional derivatives is simply beyond the
resolution limits of geophysical inversion, as well as those in the foreseeable future, analyses such
as ours provide the necessary basis for observational hypothesis testing common across the
spectrum of the physical sciences. In short, we have a (fractional calculus) theory and a first-ever
method for making predictions; the next step is data collection and analysis to see if the theory
holds up under observational and theoretical scrutiny.
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