Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Deeply Integrated Vehicle Dynamic and Powertrain Operation for Efficient Plug-in Hybrid Electric Bus

Conference ·
OSTI ID:1560399

The emerging connected and automated vehicle (CAV) technology has opened the door for developing innovative applications and systems to improve vehicle energy efficiency. While most of the recent research has been focused on optimizing vehicle dynamic (VD) and powertrain (PT) operation in isolation, there exists untapped potential to further improve vehicle fuel efficiency through a co-optimization of VD&PT control. In this paper, the authors develop an eco-operation solution for a plug-in hybrid electric bus (PHEB) which seamlessly integrates state-of-the-art CAV applications with advanced powertrain optimization strategies, aiming at improving vehicle energy efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6 components, including traffic/signal timing information acquirement, information integration, scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for validation and fine-tuning. A deeply integrated vehicle dynamic and powertrain control algorithm is proposed in the paper to optimize the energy-efficiency. Based on the key logic of powertrain control strategy of PHEB, the authors develop a simplified PHEB powertrain model, and put it into their graph based optimization model as the edge cost to derive the optimal speed profile, which is further fine-tuned in the Simulink model. The proposed mode is validated in multiple numerical tests under Eco-Approach and Departure, Eco-Stop and Launch and Eco-Cruise scenarios, and shows significant performance (above 20%) in energy-saving.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1560399
Country of Publication:
United States
Language:
English

Similar Records

Co-Optimization Scheme for Hybrid Electric Vehicles Powertrain and Exhaust Emission Control System Using Future Speed Prediction
Journal Article · Mon Jan 04 23:00:00 EST 2021 · IEEE Transactions on Intelligent Vehicles · OSTI ID:1756274

Comprehensive powertrain modeling for heavy-duty applications: A study of plug-in hybrid electric bus
Journal Article · Tue Nov 30 23:00:00 EST 2021 · Energy Conversion and Management · OSTI ID:1843712

Model Based Validation of Intelligent Powertrain Strategies for Connected and Automated Vehicles
Journal Article · Mon Apr 17 00:00:00 EDT 2023 · IEEE Xplore · OSTI ID:2569129

Related Subjects