
Deeply Integrated Vehicle Dynamic and Powertrain Operation for 

Efficient Plug-in Hybrid Electric Bus 
 

 

 

Peng Hao, Ph.D* 

Center for Environmental Research & Technology, University of California, Riverside 

1084 Columbia Avenue, Riverside, CA 92507, USA 

Tel: +1 951 781 5777, Fax: +1 951 781 5790, Email: haop@cert.ucr.edu  

 

Kanok Boriboonsomsin, Ph.D 

Center for Environmental Research & Technology, University of California, Riverside 

1084 Columbia Avenue, Riverside, CA 92507, USA 

Tel: +1 951 781 5792, Fax: +1 951 781 5790, Email: kanok@cert.ucr.edu 

 

Guoyuan Wu, Ph.D 

Center for Environmental Research & Technology, University of California, Riverside 

1084 Columbia Avenue, Riverside, CA 92507, USA 

Tel: +1 951 781 5630, Fax: +1 951 781 5790, Email: gywu@cert.ucr.edu 

 

Zhiming Gao, Ph.D 

Oak Ridge National Laboratory 

P.O. Box 2008, Oak Ridge, TN 37831, USA 

Tel: +1-865-946-1339, Email: gaoz@ornl.gov 

 

Tim J. LaClair, Ph.D 

Oak Ridge National Laboratory 

P.O. Box 2008, Oak Ridge, TN 37831, USA 

Tel: +1-865-946-1305, Email: laclairtj@ornl.gov 

 

Matthew Barth, Ph.D 

Center for Environmental Research & Technology, University of California, Riverside 

1084 Columbia Avenue, Riverside, CA 92507, USA 

Tel: +1 951 781 5782, Fax: +1 951 781 5790, Email: barth@ece.ucr.edu 

 

 

 

*: Corresponding Author 

 

 

 

Number of Words: 4648 words text + 9 Figures + 2 Tables = 7,398 words 

Presentation at the Transportation Research Board (TRB) 99th Annual Meeting, Washington, 

D.C 

mailto:gywu@cert.ucr.edu


Hao, Boriboonsomsin, Wu, Gao, LaClair and Barth 

2 
 

ABSTRACT 

The emerging connected and automated vehicle (CAV) technology has opened the door for 

developing innovative applications and systems to improve vehicle energy efficiency. While most 

of the recent research has been focused on optimizing vehicle dynamic (VD) and powertrain (PT) 

operation in isolation, there exists untapped potential to further improve vehicle fuel efficiency 

through a co-optimization of VD&PT control. In this paper, we develop an eco-operation solution 

for a plug-in hybrid electric bus (PHEB) which seamlessly integrates state-of-the-art CAV 

applications with advanced powertrain optimization strategies, aiming at improving vehicle energy 

efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6 

components, including traffic/signal timing information acquirement, information integration, 

scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for 

validation and fine-tuning. A deeply integrated vehicle dynamic and powertrain control algorithm 

is proposed in the paper to optimize the energy-efficiency. Based on the key logic of powertrain 

control strategy of PHEB, we develop a simplified PHEB powertrain model, and put it into our 

graph based optimization model as the edge cost to derive the optimal speed profile, which is 

further fine-tuned in the Simulink model. The proposed mode is validated in multiple numerical 

tests under Eco-Approach and Departure, Eco-Stop and Launch and Eco-Cruise scenarios, and 

shows significant performance (above 20%) in energy-saving.  

 

KEYWORDS: Eco-Approach and Departure, Plug-in Hybrid Electric Bus, Connected Vehicles, 

Powertrain Control, Eco-Driving 
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INTRODUCTION AND MOTIVATION 

The emerging connected and automated vehicle (CAV) technology has opened the door for 

developing innovative applications and systems to improve vehicle energy efficiency. Among all 

the CAV based applications, eco-driving at signalized intersection (i.e. Eco-Approach and 

Departure) is particularly promising for fuel saving and emission reduction in urban area, as drivers 

would effectively reduce stops and idling and avoid unnecessary acceleration and deceleration by 

receiving signal phase and timing (SPaT) information in advance (1). Connected eco-driving is 

also one of the most feasible pilot applications in the early stage of the Connected and Automated 

Vehicle (CAV) era, as it could show significant effect on fuel economy improvement under low 

penetration rate, even for a single vehicle that is communicable with the signal controller. 

Early development and deployment of connected eco-driving technology mainly focused on 

vehicle dynamic control of passenger vehicles. Table 1 summarizes the connected eco-driving 

models model for intersection approach and departure. Those models are applied to different types 

of signals and facilities, and are developed using different algorithms. In general, rule-based 

models (e.g. (2), (4), and (9)) are efficient for computation and convenient for implementation, but 

may not find the best fuel-saving solution. Optimization-based methods (e.g. (5), (6), and (7)) have 

slightly higher performance in fuel saving and better flexibility in model extension, but may not 

have high enough computational efficiency for real time implementation. This computational 

efficiency issue can be solved by formulating the problem as a dynamic programming model (6). 

Table 1 also shows that all applications have good performance in energy saving, although 

different studies may have different test scenarios and different baseline driving strategies, which 

make the saving varying from 8 to 59%.  

Table 1 Summary of connected eco-driving models 
Authors and reference Traffic 

signal 

# of Inter-

sections 

Model description Fuel 

saving 

Sindhura et al. (1) Fixed-time Multiple Acceleration rate minimization 12-14% 

Li et al. (2) Fixed-time Single  Drivers make control based on alerts 8% 

Asadi and Vahidi (3) Fixed-time Single Predictive cruise control 59% 

Barth et al. (4) Fixed-time Single Trigonometric speed profiles 10-15% 

Rakha et al. (5) Fixed-time Single Fuel as the  optimization objective 25% 

Kamalanathsharma 

and Rakha (6) 

Fixed-time Single Multi-stage dynamic programming 19% 

De Nunzio et al. (7) Fixed-time Multiple Pruning algorithms/ optimal control 10% 

Mahler and Vahidi 

(8) 

Probabilistic Multiple Predictive optimal velocity-planning 16% 

Hao et al. (9) Actuated Single Robust strategy for signal actuation 12% 

 

Those applications show great energy-saving potential of connected eco-driving and guide the 

direction of future deployment. However, most connected eco-driving models have less emphasis 

on powertrain control, and use generic or simple model (e.g. tractive power optimization) to 

represent the powertrain characteristics. Recent studies pay more attention to the significance of 

powertrain in connected eco-driving research and developed powertrain-specific eco-driving 

model for energy optimization. Li and Peng developed a fuel consumption minimization strategy 
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that was adaptive to the continuously variable transmission (CVT) of gasoline vehicles (10). Hu 

et al. proposed a dynamic/powertrain integrated control model for passenger vehicles that traveling 

mainly on freeways with rolling terrain to optimize the energy efficiency (11). Huang and Peng 

developed an algorithm to optimize vehicle speed trajectory over multiple signalized intersections 

with known traffic signal information using sequential convex optimization method (12). This 

paper adopted a simplified powertrain model which assumes powertrain efficiency factors are 

static and CVT keeps the engine operating long the best brake specific fuel consumption (BSFC) 

line. Jin et al. developed a power-based connected eco-driving controller for longitudinal control 

optimization, which is suitable to signalized intersections but takes relatively long computational 

time due to nonlinear integer programing (13). Qi et al. designed and evaluated an integrated 

connected eco-driving assistance system for plug-in hybrid electric vehicles (PHEVs) (14). Two-

subsystems, vehicle trajectory planning system and online energy management system, are 

optimized separately, and combined at the end to find the partial-optimal solution. Hao et al. 

developed a truck eco-approach and departure system based on SPaT message from signal 

controllers and road grade information along the path (15). This truck EAD model consisted of 

two levels: a powertrain-based fuel consumption estimation model and the graph-based optimal 

trajectory planning model. The powertrain model in this paper was designed for diesel engine with 

a 6-gear transmission, but it can be applied to other type of powertrains for energy consumption 

estimation. 

In this paper, we aim to develop an eco-operation solution for a plug-in hybrid electric bus (PHEB) 

which seamlessly integrates state-of-the-art CAV applications with advanced powertrain 

optimization strategies, aiming at improving vehicle energy efficiency and reducing tailpipe 

emissions. The graph based trajectory planning algorithm in (15) is improved to adapt the PHEB 

powertrain. A deeply integrated vehicle dynamic and powertrain control model is proposed in the 

paper to optimize the energy-efficiency. The rest of this paper is organized as follows. In the next 

section, we introduce the project information, including application types and powertrain models 

for the PHEB. We then develop the integrated algorithm for vehicle dynamic and powertrain 

control, mainly using Eco-Approach and Departure as the example. In the numerical experiment 

section, we validate the proposed model using different applications and scenarios, followed by the 

conclusion marks. 

EFFICIENT PLUG-IN HYBRID ELECTRIC BUSES 

The CAV applications being developed for a PHEB in this project are illustrated in Figure 1. 

Besides Eco-Approach and Departure (EAD) application at signalized intersections, the proposed 

system also includes Eco-Stop and Launch (ESL) application which determines the most energy-

efficient vehicle speed profile for decelerating to and accelerating from bus stops and stop signs, 

and Eco-Cruise (EC) application which identifies the most energy-efficient cruising speed for the 

bus based on look-ahead traffic and terrain (i.e., road grade) conditions, roadway speed limits, and 

vehicle performance characteristics. 
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Figure 1. CAV applications being developed in this research 

A Matlab/Simulink based PHEB model for a general pre-transmission parallel hybrid configuration 

was developed based on Oak Ridge National Laboratory components, data and Autonomie results 

as a part of the effort for an innovative vehicle-powertrain eco-operation system. Figure 2 shows 

the PHEB powertrain configuration and corresponding model framework. The key components 

considered in the PHEB powertrain model include chassis, wheel, final drive, transmission, clutch, 

engine, motor/inverter, battery, electrical accessories, and starter, as well as the driver model. In 

addition, there are also five control modules for engine, clutch, transmission, motor, battery and 

EV/Hybrid controller that manage key operating decisions during propulsion and braking. 

 

  
(a) PHEB powertrain configuration schematic 

 
(b) PHEB Matlab/Simulink model framework 

Figure 2. Hybrid powertrain configuration and Matlab/Simulink model framework 
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INTEGRATED VEHICLE DYNAMIC AND POWERTRAIN CONTROL 

In this section, we take Eco-Approach and Departure (EAD) as the example, to show the methods 

that deeply integrate the vehicle dynamic and powertrain control system of the study PHEB. Other 

applications, such as Eco-Stop and Launch and Eco-Cruise, can be considered as the reduced 

version of EAD which do not consider the signal timing constraints. One can define specific target 

states to accommodate those applications and scenarios. 

System Architecture 

The proposed PHEB eco-operation system have following components, as shown in Figure 3.  

 

Figure 3 System architecture 

Information acquirement, including traffic sensing and SPaT transmission. In this component, we 

collect all information from all available sources. For signal timing information, the system can get 
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raw SPaT messages from either DSRC or 4G cellular network, and decode them into signal phase 

and count down data. For traffic information, the system synthesizes the data coming from 

infrastructure (e.g. loop detector and roadside radar), onboard sensors (e.g. automotive radar or 

camera), or communication devices from connected vehicles. Based on the traffic related data, we 

identify the current state of the preceding vehicle and predict its future states when approaching the 

intersection. If the preceding vehicle is not likely to be queued. Then we can forecast its future 

trajectory based on its current speed. If the preceding vehicle has joined the queue when detecting, 

we measure or estimate the location it queues, and predict the time it starts and the time it passes 

the intersection based on shockwave theory. If the vehicle have not joined the queue but is very 

likely to stop at queue at the intersection, we predict the time and location it joins the queue, and 

the time it starts or passes the intersection when the lights turns green. Those key state parameters 

will help envision the future trajectory of the vehicle based on some assumption of the vehicle 

dynamics, e.g. acceleration and deceleration rate. The predicted preceding vehicle’s trajectory and 

the SPaT information will be sent to the information integration component for further processing. 

Information integration. We translate the trajectory and signal data into the boundary values of 

the trajectory planning algorithm. As the study vehicle have to keep a safe distance away from the 

preceding vehicle, in the graph-based trajectory planning algorithm, a node is valid only if its 

distance to the intersection is greater than the distance of the preceding vehicle plus a safe distance. 

As the study vehicle cannot pass the intersection during the red time, any edge that connects two 

nodes at different sides of the intersection is invalid if the parent code is in the red time. Based on 

above rules we can define the reachable region of trajectory planning in the temporal-spatial 

domain, as shown in Figure 4. There are three typical cases for reachable region identification. If 

the vehicle can pass the intersection during the current green phase, no constraints are needed. The 

reachable region is then in a rhombus-shape. If the vehicle cannot keep the current speed to pass 

the intersection due to traffic signal and have to stop, the red time will provide a horizontal 

boundary. If there is a preceding vehicle, the reachable region is further shrank to keep a safe gap 

from that vehicle. In addition, the vehicle is only allowed to stop at the intersection if it is the first 

vehicle in the queue, or behind the preceding vehicle with a certain gap if it is not the first. A stop 

at any other location is not permitted according to common sense.  

 

Figure 4 Three typical cases of reachable regions 

Scenario identification. In this component, we aim to identify the target state of the vehicle based 

on its current state and signal timing information. In order to design an energy efficient trajectory 
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while not sacrificing the travel time, we can set the target state as the final state of an uninformed 

driver who tries to pass the intersection as soon as possible (but still under traffic rules). Here the 

final state includes the location, time and speed when the vehicle is at the downstream of the stop 

line. Note that one can choose another target state for trajectory planning based on the user’s need, 

the value of time/energy, and the following driving. For example, there may be some energy saving 

opportunity if we postpone the target departure time a little, but that mean delay in time and more 

chance of missing the green phase of the downstream intersection. As the focus of this paper is 

mainly on co-optimization of vehicle trajectory and powertrain, we will not discuss the different 

guidelines and strategies to identify the possible scenarios and target states in detail. To simplify 

the problem, we assume a reasonable target start is pre-determined before the integrated control. 

Powertrain control and trajectory planning are two key components in the system. As discussed 

in the introduction, most fine-grained powertrain control algorithm are coded in 

MATLAB/Simulink based platform, such as Autonomie (16) and other customized models. For 

this PHEB project, a rule-based SOC control and engine/motor operation strategy is also designed 

in Simulink. It is difficult to put that Simulink model into the optimization loop directly, as it 

requires the full speed profile as the input driving cycle. It is therefore impossible to calculate "per 

second energy cost" based on the instant state. In addition, it takes very long computation time to 

go through the Simulink model for every possible trajectory to search for the optimal solution. A 

feasible alternative approach for deep algorithm integration is:  

Step 1: Based on the key logic of powertrain control strategy, we develop a simplified PHEB 

powertrain model, and put it into our graph based optimization model as the edge cost to derive the 

theoretical optimal speed profile. 

Step 2: The MATLAB/Simulink model takes that speed profile as the initial driving cycle, fine-

tune it if it is not valid in engineering practice, and compute the powertrain parameters and energy 

consumption for the whole process under the optimal powertrain strategy. 

Step 3 (optional): Repeat Step 1 and 2 iteratively to find the optimal solution with high validity and 

energy-efficiency. The number of iteration is mainly decided by real-time performance 

requirement. 

In this way, Simulink is taken out of the optimization loop to avoid the huge computation time, and 

it is applied in Step 2 to ensure the solution is valid and effective in practice. The powertrain model 

is then included as a module of the graph based trajectory planning model and we can co-optimize 

both models at the same time. The whole process can be illustrated in the lower part of Figure 1. 

We use the right arrows to show Step 1, down arrow to show Step 2, and dashed up arrow to show 

the Step 3 which is optional. 

In the following sections, we will describe the simplified PHEB powertrain model and graph based 

trajectory planning model in detail to show the deep integration of both operations. 

Simplified PHEB powertrain model 
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For the study parallel pre-transmission PHEB, the supervisory control strategy considers three 

propulsion control processes: PHEB depletion charge (DC), discharge dominant control (DDC), 

and charging dominant control (CDC). As shown in Figure 5, when SOC is greater than the upper 

bound of the control range (SOCub), the control strategy selects the PHEB DC mode. After the SOC 

decreases below SOCub, the operation is in charge sustaining mode and the controller switches 

between the DDC and CDC processes each time the specified values of SOCub and SOClb are 

reached, ensuring safe and reliable battery operation. If SOC< SOClb, the control strategy adopts 

CDC.  

Discharge dominant control (DDC): If the vehicle is under DDC mode, the PHEB can run in 

engine propulsion mode, motor propulsion mode, and combined engine and motor propulsion mode 

as show in Figure 5. The mode selection is based on wheel torque 𝜏𝑤 𝑙 and maximum engine torque 

𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥, as well as the estimate engine and motor efficiency 𝜂𝑒𝑛𝑔 𝑝𝑤𝑡 and 𝜂𝑚𝑜𝑡 𝑝𝑤𝑡 under 

certain speed.  

We first formulate the equation to calculate wheel torque. Assume the velocity of the vehicle is v, 

the wheel speed is 𝑣/𝑟𝑟 , where 𝑟𝑟  is the radius of the wheel, and the wheel torque demand is 

formulated as: 

𝜏𝑤 𝑙 = 𝑟𝑟 (𝑚𝑎 +𝑚𝑔sin𝜃 + 𝜇𝑚𝑔cos𝜃 +
1

2
𝐶𝐷𝜌𝑎𝐴𝑣

2)          (1) 

where m is the vehicle mass (kg), g is gravity constant, 𝜃 is the road grade (rad), 𝜇 is the rolling 

resistance coefficient, 𝐶𝐷 is the drag coefficient, 𝜌𝑎is the air density (kg/m3) and A is the vehicle 

frontal area (m2).  

If the wheel torque 𝜏𝑤 𝑙 is less than the maximum engine torque 𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥, as shown in the 

bottom left of Figure 5, the vehicle need to determine whether an engine-only mode or a motor 

only mode is needed based on the efficiency of both modes at current state. Based on the 

Component energy efficiency database (CEED) based strategy and the parameters from Simulink 

model, we develop interpolation methods for efficiency factor computation and mode choice. 

Based on the mode selection result, if the PHEB is under engine propulsion mode, we compute the 

engine torque as follows 

𝜏𝑒𝑛𝑔 = 𝜏𝑤 𝑙/(𝜂𝑓𝑑𝜂𝑔𝑏𝑅𝑓𝑑𝑅𝑔𝑏)        (2) 

where 𝑅𝑔𝑏 is the gear ratio, 𝑅𝑓𝑑 is the final drive ratio, 𝜂𝑔𝑏 and 𝜂𝑓𝑑 are the efficiency of gear box 

and final drive. The engine speed is then computed as Eqn (3). Based on the engine torque and 

speed, the fuel consumption rate can be then calculated using engine map.  

𝜔𝑒𝑛𝑔 = 𝑅𝑓𝑑 𝑅𝑔𝑏 𝑟𝑟⁄ ∙ 𝑣                                    (3) 

If the PHEB is under motor propulsion mode, the motor torque is calculated using the same 

formula as Eqn (2). 

𝜏𝑚𝑜𝑡 = 𝜏𝑤 𝑙/(𝜂𝑓𝑑𝜂𝑔𝑏𝑅𝑓𝑑𝑅𝑔𝑏)        (4) 

𝜔𝑚𝑜𝑡 = 𝑅𝑓𝑑 𝑅𝑔𝑏 𝑟𝑟⁄ ∙ 𝑣 
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The battery power is then calculated based on the motor efficiency map. Note that if SOC is greater 

than SOCub, same motor propulsion mode model can be applied to the PHEB depletion charge 

mode. 

If the wheel torque 𝜏𝑤 𝑙 is greater than the maximum engine torque 𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥, the PHEB is 

under combined engine and motor propulsion mode. Based on the Simulink model, we can get the 

torque of motor and engine using following equations. 

𝜏𝑚𝑜𝑡 = 𝜏𝑚𝑜𝑡 𝑚𝑎𝑥(𝜔𝑚𝑜𝑡) 

𝜏𝑒𝑛𝑔 =
𝜏𝑤ℎ𝑙

𝜂𝑓𝑑𝜂𝑔𝑏𝑅𝑓𝑑𝑅𝑔𝑏
− 𝜏𝑚𝑜𝑡                                       (5) 

Charging dominant control (CDC): if the vehicle is under CDC mode, the PHEB can run in 

engine propulsion while charging mode, and combined propulsion mode, depending on the relation 

between 𝜏𝑤 𝑙 and 𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥. 

As indicated in the bottom right of Figure 5, when engine propelling the vehicle while charging 

battery (𝜏𝑤 𝑙 ≤ 𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥), an interpolation function was applied to find the optimal engine 

torque 𝜏𝑒𝑛𝑔 𝑜𝑝𝑡(𝜔𝑒𝑛𝑔)under the current speed, so the residual power is assigned to the battery for 

charging. The motor (generator) torque for charging is 

𝜏𝑚𝑜𝑡 𝑐 𝑔 = 𝜏𝑒𝑛𝑔 𝑜𝑝𝑡(𝜔𝑒𝑛𝑔) −
𝜏𝑤ℎ𝑙

𝜂𝑓𝑑𝜂𝑔𝑏𝑅𝑓𝑑𝑅𝑔𝑏
              (6) 

Under combined engine and motor propulsion mode (𝜏𝑤 𝑙  𝜏𝑒𝑛𝑔 𝑤 𝑙 𝑚𝑎𝑥), Similar as Equation 

(5), we have 

𝜏𝑒𝑛𝑔 = 𝜏𝑒𝑛𝑔 𝑚𝑎𝑥(𝜔𝑒𝑛𝑔) 

𝜏𝑚𝑜𝑡 =
𝜏𝑤ℎ𝑙

𝜂𝑓𝑑𝜂𝑔𝑏𝑅𝑓𝑑𝑅𝑔𝑏
− 𝜏𝑒𝑛𝑔                                       (7) 

Regenerated Braking: As the PHEB is capable of converting vehicle kinetic energy into a storable 

form of battery energy during braking, the regenerated braking power is formulated as  

𝑊𝑟𝑒𝑔 = 𝜏𝑤 𝑙 ∙ 𝜔𝑚𝑜𝑡 ∙ 𝜂𝑤 𝜂𝑓𝑑 𝜂𝑚𝑜𝑡  𝜂𝑏𝑎𝑡𝑡                              (8) 

where 𝜂wh is the wheel drive efficiency, 𝜂𝑚𝑜𝑡 is motor efficiency, and 𝜂𝑏𝑎𝑡𝑡 is battery efficiency. 

For combined engine and motor propulsion mode and engine propelling the vehicle while charging 

mode, we also need to determine the weights of fuel consumption rate and battery discharging 

power (or charging power) to derive the cost of each edge in the trajectory planning. The impact 

of mode choice should be considered in a relatively long term, as the bus may be under operation 

for 8 hours before it has the chance to charge in the charging facility. Therefore, we estimate the 

weights based on the mileage that the unit fuel consumption or battery power can propel the bus 
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under engine-only or motor only mode. The final cost is then the weighted sum of fuel 

consumption rate and battery power, with kW as the unit. The simplified PHEB powertrain model 

provide a direct link to connect vehicle dynamic state (speed, acceleration and road grade) to the 

energy consumption. This model is then integrated into the graph-based trajectory planning 

algorithm as the cost of each edge. 

Trajectory Planning 

As stated in the previous section, the trajectory planning algorithm synthesizes the traffic/signal 

boundary condition from information integration module, target states information from scenario 

identification module, and the energy cost from the powertrain module. We then develop a graph 

model to solve the trajectories planning problem with constraints on target travel time T, target 

distance X and target speed 𝑣𝑑. To formulate this graph model, we discretize the time and space 

into fixed time step ∆𝑡 and distance grid ∆𝑥. The vehicle speed domain is therefore discretized with 
∆𝑥

∆𝑡
 as the step. At each node of the proposed directed graph G=(V, E), we assign a unique 3-D 

coordinate (t, x, v) which describes the dynamic state of the vehicle, where 𝑡 ∈ (0 𝑇] is the time (in 

second), 𝑥 ∈ [0 𝑋] is the distance to the intersection (in meter) and 𝑣 ∈ [0 𝑣𝑙] is the speed (in m/s), 

where 𝑣𝑙 is the speed limit In this graph. As the study vehicle have to keep a safety distance xgap 

from the location of the preceding vehicle xpre (t) at certain time. We have 

𝑥(𝑡) ≥ 𝑥𝑝𝑟𝑒(𝑡) + 𝑥𝑔𝑎𝑝                                                             (9) 

We also have v(t)>0 if 𝑥(𝑡) ≥ 𝑥𝑝𝑟𝑒_𝑞𝑢𝑒𝑢𝑒, as the vehicle is only allowed to stop right behind the 

queue position of preceding vehicle (or the stop line if there is no preceding vehicle). There is an 

edge from V1 (t1, x1, v1) to V2 (t2, x2, v2) if and only if following rules are satisfied: 

1) Time at V2 is consecutive with time at V1: 𝑡2 = 𝑡1 + ∆𝑡; 
2) Consistency on distance and speed:  𝑥2 = 𝑥1 + 𝑣1∆𝑡 

3) Acceleration constraint: 𝑎𝑚𝑖𝑛 ≤
𝑣2 𝑣1

∆𝑡
≤ 𝑎𝑚𝑎𝑥 , where 𝑎𝑚𝑖𝑛  and 𝑎𝑚𝑎𝑥  are the maximum 

deceleration rate and maximum acceleration rate for the study diesel truck respectively. 

4) Signal constraint: if 𝑡1 is in the red time, 𝑥1 ∙ 𝑥2  0 𝑜𝑟 𝑥1  0 𝑥2 = 0 to ensure there is no  

edge that connects two nodes at different side of the intersection if the parent code is in the red time. 

Based on the PHEB powertrain model, we define the cost on edge 𝑉1 → 𝑉2 as the weighted energy 

consumption during this state transition process. The road grade information is also integrated in 

the model (details in (15)). At this point, the energy consumption minimization problem is 

converted into a problem to find the shortest path from the source node Vs(0, X, vs) to the destination 

node Vd (T, 0, vd) in the directed graph G=(V, E). The Dijkstra's algorithm (17) is then applied to 

solve this single-source shortest path problem. 

The deep integration based trajectory optimization algorithm is then interfaced with the 

Matlab/Simulink platform for further trajectory fine-tuning and powertrain parameters and energy 

consumption computation. As shown in Figure 3, the three steps can repeat in a loop to improve 

the co-optimization performance, if the computation time allows. 
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NUMERICAL EXPERIMENT 

Eco-Approach and Departure 

In this section, the developed VD/PT co-optimization algorithm is applied to simulate vehicle 

trajectories of a PHEB at a hypothetical signalized intersection with different entry times. The 

length of the study area is 300 m (i.e., from 300 m upstream of the intersection to the stop line). 

The speed limit is set to 40 mph. The time of the green phase is 27 s, the time for yellow is 3 s and 

the time for the red phase is 30 s. Six different entry times in a cycle are tested: the 5th second in 

green (G5), the 15th second in green (G15), the 25th second in green (G25), the 5th second in red 

(R5), the 15th second in red (R15), and the 25th second in red (R25). We also test multiple initial 

speeds from 10 mph to 40 mph, with 10 mph as the increment. 

In Figure 7, we show PHEB trajectories for three Eco-Approach and Departure (EAD) cases. The 

blue solid lines represent the baseline trajectories for uninformed driver (without EAD). The black 

dashed lines represent the trajectories generated using the trigonometric EAD algorithm which 

was widely applied in previous studies (4, 9). The red dotted lines and circles represent the 

trajectories generated using the integrated control algorithm developed in this paper. We also show 

the signal phases using their corresponding colors. Note that in each subfigure, we overlay the 

trajectories of the PHEB under six different entry time scenarios (i.e., G5, G15, G25, R5, R15, and 

R25). The energy savings reported along the x-axis correspond to the six entry time scenarios. 

These are the energy savings of the newly developed EAD algorithm as compared to the baseline 

case of uninformed driver without EAD. 

Figure 7 (a) shows the comparison of PHEB trajectories during CDC mode when the PHEB mainly 

relies on power from the engine. Under CDC operation, the newly developed EAD algorithm 

results in an average energy savings of 26% when compared with the baseline PHEB with 

uninformed driver. The new EAD algorithm also results in an average of 10% less energy 

consumption than the trigonometric EAD algorithm. Figure 7(b) shows the comparison of PHEB 

trajectories during DDC mode. The newly developed EAD algorithm results in an average energy 

savings of 31% when compared with the baseline PHEB with uninformed driver. The new EAD 

algorithm also results in an average of 10% less energy consumption than the trigonometric EAD 

algorithm.  

For both CDC and DDC mode, the proposed methods show significant energy saving benefit for 

almost all scenarios. Specifically, when the vehicle approaches the intersection area at the 

beginning of the red phase, the energy saving is over 40% for CDC and 50% for DDC. If the 

vehicle can pass the intersection directly in the green time without any delay, the improvement on 

energy is not as significant because there is not too much opportunity for trajectory optimization 

in this case. 
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(a) EAD for PHEB under Discharge-Dominated Control 

 
(b) EAD for PHEB under Charge-Dominated Control 

Figure 7. Trajectories and energy saving of proposed EAD model 
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We then take the optimal trajectory as the input driving cycle and applied it to the 

MATLAB/Simulink model for powertrain-parameters and energy consumption fine-tuning. Table 

2 shows the fuel and battery consumption for PHEB under both CDC and DDC mode. Comparing 

with baseline method and trigonometric method, the proposed method shows significant energy 

saving benefits in this table. 

Table 2 (a) Fuel and Battery consumption for PHEB under Charge-Dominated Control 

Entry Speed 10 mph 20 mph 30 mph 40 mph 

Consumption 
(- if Charging) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Baseline 0.20 0.21 0.15 0.13 0.13 0.07 0.11 -0.06 

Old EAD 0.20 0.04 0.20 -0.20 0.17 -0.26 0.09 -0.04 

New EAD 0.22 -0.15 0.17 -0.17 0.15 -0.22 0.08 -0.17 

 

Table 2 (b) Fuel and Battery consumption for PHEB under Discharge-Dominated Control 

Entry Speed 10 mph 20 mph 30 mph 40 mph 

Consumption 
(- if Charging) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Fuel (g) Battery 
(kwh) 

Baseline 0.12 0.52 0.10 0.29 0.08 0.22 0.06 0.08 

Old EAD 0.10 0.49 0.07 0.33 0.06 0.22 0.05 0.09 

New EAD 0.06 0.50 0.06 0.32 0.05 0.21 0.04 0.09 

 

Eco-Stop and Launch 

The Eco-Stop and Launch (ESL) application can be considered as a special case of EAD. It is 

similar to the stop scenario in EAD, but instead of stopping at a traffic light, the PHEB is to stop at 

a bus stop or a stop sign. To test the eco-stop process, we assume the initial distance to the bus stop 

(or stop sign) to be 200 m, and the entry speed to be 30 mph. We then use the new EAD algorithm 

to construct the most energy-efficient deceleration trajectories for different time durations. A 

similar approach is applied to the eco-launch process to determine the most energy-efficient 

acceleration trajectories when accelerating from a stop. 

Figure 8(a) shows the results of the eco-stop and eco-launch processes in CDC operation. In the top 

figure, we label the total energy consumption (in kJ) of the deceleration process below the optimal 

trajectories (red solid curves) for different deceleration durations from 20 s to 30 s with a 2 s 

increment. It shows that if the PHEB takes 28 s to traverse the 200 m distance to a full stop at the 

destination, the total energy consumption would be lowest at 4.9 kJ. That is 88% less than the 

baseline method, which is derived from the previously developed trigonometric model. In the 

bottom figure, we note the total energy consumption of the acceleration process above the optimal 

trajectories for different acceleration durations. The PHEB would consume the least fuel 

consumption of 247 kJ if it takes 22 s to traverse the 200 m distance to get to the final speed of 30 
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mph. This eco-launch acceleration profile achieves 5% fuel savings when compared with the 

baseline model. Figure 8(a) also shows other options for eco-stop and launch for the different 

deceleration/acceleration durations. It is observed that the total energy consumption has a convex 

relationship with the deceleration/acceleration duration. Thus, the globally optimal trajectory with 

respect to total fuel consumption and time can be found. Note that if the PHEB needs to save time 

in order to catch up with the schedule, it may choose a faster stop and launch profile at the expense 

of energy efficiency. 

Figure 8(b) shows the results of the eco-stop and eco-launch processes in DDC operation. During 

the eco-stop process, the PHEB may gain additional energy from regenerated braking if it 

decelerates slowly to a stop. The net energy savings as compared to the baseline range from 10 kJ 

(50%) to for the deceleration duration of 20 s to 22 kJ (103%) for the deceleration duration of 30 s. 

Note that the total energy consumption has a monotonic relationship with the deceleration 

duration—the shorter the duration, the more total energy consumption. Thus, the selection of the 

stop and launch profile will depend more on the time constraint and practicality. During the eco-

launch process, the energy consumption is not as sensitive to how the PHEB accelerates within the 

same amount of acceleration duration. The baseline and the fastest optimal trajectories would both 

take 22 s and consume 261 and 248 kJ, respectively. A slower acceleration of 24 s would save 14 

kJ or 5%.  

 

 (a) Eco-Stop and Launch under CDC mode 
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(b) Eco-Stop and Launch under DDC mode 

Figure 8. Trajectories of Eco-Stop and Launch 

Eco-Cruise 

The Eco-Cruise (EC) application can be considered as another special case of EAD. It is similar to 

the constant speed scenario of EAD in Figure 1, but in addition to cruising through a signalized 

intersection, it can also be applied to cruising in midblock or between stops. As cruising does not 

involve deceleration and acceleration, the key aspect to address with respect to energy consumption 

is the impact of road grade. For any cruising speed, an optimal vehicle trajectory can be designed 

for a specific terrain.  

Figure 9 shows examples in which the PHEB enters a road segment with the distance of 260 m at 

the speed of 13 m/s under CDC operation mode. If the road segment is on a flat terrain, the optimal 

solution is to simply cruise at 13 m/s for 20 s. However, if the road segment is on a rolling terrain, 

then the PHEB needs to adjust the cruising speed in response to the road grade in order to minimize 

the energy consumption. As shown in Figure 10, the EC application suggests different speed 

profiles for different types of terrain. In the CDC mode, for a crest vertical curve with 5% uphill in 

the first half and 5% downhill in the second half, the optimal speed profile suggested by EC 

(represented by the blue solid curve) saves 8.6% fuel as compared with the baseline with a constant 

speed. The optimal speed profile is an M-shaped curve with the minimum at the peak point of the 

crest vertical curve. For a sag vertical curve with 5% downhill in the first half and 5% uphill in the 

second half, the optimal speed profile suggested by EC (represented by the red dotted curve) saves 

17% fuel. The optimal speed profile is a W-shaped curve with the maximum at the bottom of the 

sag vertical curve. 
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Figure 9. Eco-Cruise under CDC mode 

CONCLUSIONS 

In this paper, we developed an integrated vehicle dynamic and powertrain control model to support 

the eco-operation solution for a plug-in hybrid electric bus (PHEB) and improve the vehicle energy 

efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6 

components, including traffic/signal timing information acquirement, information integration, 

scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for 

validation and fine-tuning. Based on the key logic of powertrain control strategy of PHEB, we 

develop a simplified PHEB powertrain model, and put it into the graph based optimization model 

as the edge cost to derive the theoretical optimal speed profile. The MATLAB/Simulink model 

takes that speed profile as the initial driving cycle, fine-tune it if it is not valid in engineering 

practice, and compute the powertrain parameters and energy consumption for the whole process 

under the optimal powertrain strategy. The proposed mode is validated in multiple numerical tests 

under EAD, ESL and EC scenarios, and shows significant performance in energy-saving, e.g. 

26%-31 in EAD, 5%~103% in ESL, and 9%~17% in EC. Meanwhile, the proposed algorithm is 

computational efficient due to the dynamic programming concept when formulating the problem, 

which is beneficial in real world implementation. Directions for future research can be summarized 

as follows: 

(1) We are now working on implementation of the proposed model in both microsimulation (e.g. 

VISSIM) and Dyno-In-The-Loop testbed, so that more realistic and reliable data will be collected 

and analyzed to validate and improve the model. 

(2) The proposed model is applicable to other types of vehicles and powertrains, such as light-duty 

and heavy-duty vehicle, EVs and PHEVs, by replacing the current powertrain module with other 

models. More features of other powertrains can be evaluated in the proposed framework. 

(3) In the real world traffic, the acquisition of traffic information is constrained by the 

communication and sensing range, and the timing of actuated signals also has high uncertainty. It 

is a great challenge to design a robust speed profile that would adapt the dynamic and uncertain 

downstream traffic and signal conditions. As a future work, a Partially Observed Markov Decision 
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Process (POMDP) based approach is therefore developed to provide a proactive approach rather 

than a passive way to adapt to the dynamic uncertainty. 
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