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ABSTRACT

The emerging connected and automated vehicle (CAV) technology has opened the door for
developing innovative applications and systems to improve vehicle energy efficiency. While most
of the recent research has been focused on optimizing vehicle dynamic (VD) and powertrain (PT)
operation in isolation, there exists untapped potential to further improve vehicle fuel efficiency
through a co-optimization of VD&PT control. In this paper, we develop an eco-operation solution
for a plug-in hybrid electric bus (PHEB) which seamlessly integrates state-of-the-art CAV
applications with advanced powertrain optimization strategies, aiming at improving vehicle energy
efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6
components, including traffic/signal timing information acquirement, information integration,
scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for
validation and fine-tuning. A deeply integrated vehicle dynamic and powertrain control algorithm
is proposed in the paper to optimize the energy-efficiency. Based on the key logic of powertrain
control strategy of PHEB, we develop a simplified PHEB powertrain model, and put it into our
graph based optimization model as the edge cost to derive the optimal speed profile, which is
further fine-tuned in the Simulink model. The proposed mode is validated in multiple numerical
tests under Eco-Approach and Departure, Eco-Stop and Launch and Eco-Cruise scenarios, and
shows significant performance (above 20%) in energy-saving.

KEYWORDS: Eco-Approach and Departure, Plug-in Hybrid Electric Bus, Connected Vehicles,
Powertrain Control, Eco-Driving
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INTRODUCTION AND MOTIVATION

The emerging connected and automated vehicle (CAV) technology has opened the door for
developing innovative applications and systems to improve vehicle energy efficiency. Among all
the CAV based applications, eco-driving at signalized intersection (i.e. Eco-Approach and
Departure) is particularly promising for fuel saving and emission reduction in urban area, as drivers
would effectively reduce stops and idling and avoid unnecessary acceleration and deceleration by
receiving signal phase and timing (SPaT) information in advance (1). Connected eco-driving is
also one of the most feasible pilot applications in the early stage of the Connected and Automated
Vehicle (CAV) era, as it could show significant effect on fuel economy improvement under low
penetration rate, even for a single vehicle that is communicable with the signal controller.

Early development and deployment of connected eco-driving technology mainly focused on
vehicle dynamic control of passenger vehicles. Table 1 summarizes the connected eco-driving
models model for intersection approach and departure. Those models are applied to different types
of signals and facilities, and are developed using different algorithms. In general, rule-based
models (e.g. (2), (4), and (9)) are efficient for computation and convenient for implementation, but
may not find the best fuel-saving solution. Optimization-based methods (e.g. (5), (6), and (7)) have
slightly higher performance in fuel saving and better flexibility in model extension, but may not
have high enough computational efficiency for real time implementation. This computational
efficiency issue can be solved by formulating the problem as a dynamic programming model (6).
Table 1 also shows that all applications have good performance in energy saving, although
different studies may have different test scenarios and different baseline driving strategies, which
make the saving varying from 8 to 59%.

Table 1 Summary of connected eco-driving models

Authors and reference Traffic # of Inter- Model description Fuel
signal sections saving
Sindhura et al. (1) Fixed-time | Multiple | Acceleration rate minimization 12-14%
Lietal. (2) Fixed-time | Single Drivers make control based on alerts 8%
Asadi and Vahidi (3) | Fixed-time | Single Predictive cruise control 59%
Barth et al. (4) Fixed-time | Single Trigonometric speed profiles 10-15%
Rakha et al. (5) Fixed-time | Single Fuel as the optimization objective 25%
Kamalanathsharma | Fixed-time | Single Multi-stage dynamic programming 19%
and Rakha (6)
De Nunzio et al. (7) | Fixed-time | Multiple Pruning algorithms/ optimal control 10%
Mahler and Vahidi Probabilistic | Multiple | Predictive optimal velocity-planning 16%
8
I(—|210 etal. (9) Actuated Single Robust strategy for signal actuation 12%

Those applications show great energy-saving potential of connected eco-driving and guide the
direction of future deployment. However, most connected eco-driving models have less emphasis
on powertrain control, and use generic or simple model (e.g. tractive power optimization) to
represent the powertrain characteristics. Recent studies pay more attention to the significance of
powertrain in connected eco-driving research and developed powertrain-specific eco-driving
model for energy optimization. Li and Peng developed a fuel consumption minimization strategy
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that was adaptive to the continuously variable transmission (CVT) of gasoline vehicles (10). Hu
et al. proposed a dynamic/powertrain integrated control model for passenger vehicles that traveling
mainly on freeways with rolling terrain to optimize the energy efficiency (11). Huang and Peng
developed an algorithm to optimize vehicle speed trajectory over multiple signalized intersections
with known traffic signal information using sequential convex optimization method (12). This
paper adopted a simplified powertrain model which assumes powertrain efficiency factors are
static and CVT keeps the engine operating long the best brake specific fuel consumption (BSFC)
line. Jin et al. developed a power-based connected eco-driving controller for longitudinal control
optimization, which is suitable to signalized intersections but takes relatively long computational
time due to nonlinear integer programing (13). Qi et al. designed and evaluated an integrated
connected eco-driving assistance system for plug-in hybrid electric vehicles (PHEVS) (14). Two-
subsystems, vehicle trajectory planning system and online energy management system, are
optimized separately, and combined at the end to find the partial-optimal solution. Hao et al.
developed a truck eco-approach and departure system based on SPaT message from signal
controllers and road grade information along the path (15). This truck EAD model consisted of
two levels: a powertrain-based fuel consumption estimation model and the graph-based optimal
trajectory planning model. The powertrain model in this paper was designed for diesel engine with
a 6-gear transmission, but it can be applied to other type of powertrains for energy consumption
estimation.

In this paper, we aim to develop an eco-operation solution for a plug-in hybrid electric bus (PHEB)
which seamlessly integrates state-of-the-art CAV applications with advanced powertrain
optimization strategies, aiming at improving vehicle energy efficiency and reducing tailpipe
emissions. The graph based trajectory planning algorithm in (15) is improved to adapt the PHEB
powertrain. A deeply integrated vehicle dynamic and powertrain control model is proposed in the
paper to optimize the energy-efficiency. The rest of this paper is organized as follows. In the next
section, we introduce the project information, including application types and powertrain models
for the PHEB. We then develop the integrated algorithm for vehicle dynamic and powertrain
control, mainly using Eco-Approach and Departure as the example. In the numerical experiment
section, we validate the proposed model using different applications and scenarios, followed by the
conclusion marks.

EFFICIENT PLUG-IN HYBRID ELECTRIC BUSES

The CAV applications being developed for a PHEB in this project are illustrated in Figure 1.
Besides Eco-Approach and Departure (EAD) application at signalized intersections, the proposed
system also includes Eco-Stop and Launch (ESL) application which determines the most energy-
efficient vehicle speed profile for decelerating to and accelerating from bus stops and stop signs,
and Eco-Cruise (EC) application which identifies the most energy-efficient cruising speed for the
bus based on look-ahead traffic and terrain (i.e., road grade) conditions, roadway speed limits, and
vehicle performance characteristics.
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Figure 1. CAV applications being developed in this research

A Matlab/Simulink based PHEB model for a general pre-transmission parallel hybrid configuration
was developed based on Oak Ridge National Laboratory components, data and Autonomie results
as a part of the effort for an innovative vehicle-powertrain eco-operation system. Figure 2 shows
the PHEB powertrain configuration and corresponding model framework. The key components
considered in the PHEB powertrain model include chassis, wheel, final drive, transmission, clutch,
engine, motor/inverter, battery, electrical accessories, and starter, as well as the driver model. In
addition, there are also five control modules for engine, clutch, transmission, motor, battery and
EV/Hybrid controller that manage key operating decisions during propulsion and braking.

Parallel pre-transmission PHEB configuration

a) PHEB powertrain configuration schematic

DEe

(b) PHEB Matlab/Simulink model framework
Figure 2. Hybrid powertrain configuration and Matlab/Simulink model framework
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INTEGRATED VEHICLE DYNAMIC AND POWERTRAIN CONTROL

In this section, we take Eco-Approach and Departure (EAD) as the example, to show the methods
that deeply integrate the vehicle dynamic and powertrain control system of the study PHEB. Other
applications, such as Eco-Stop and Launch and Eco-Cruise, can be considered as the reduced
version of EAD which do not consider the signal timing constraints. One can define specific target
states to accommaodate those applications and scenarios.

System Architecture

The proposed PHEB eco-operation system have following components, as shown in Figure 3.

SPAT and MAP message
from signal controller

BSM message from
Connected vehicles
Sensor information

Vehicle dynamics
Vehicle emissions
(e.g. radar)

Traffic Sensing 3 SPaT Transmission

1 /1

Location Destinatiol

Stop line
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Scenario
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of Interest
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Integration
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. 9 | 4s .
Powertrain —— | — Trajectory
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= Key strategy as ‘Optlmal tra Jectory
= simplified model as driving cycle

bk
4 MATLAB/
Simulink

Figure 3 System architecture

Information acquirement, including traffic sensing and SPaT transmission. In this component, we
collect all information from all available sources. For signal timing information, the system can get
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raw SPaT messages from either DSRC or 4G cellular network, and decode them into signal phase
and count down data. For traffic information, the system synthesizes the data coming from
infrastructure (e.g. loop detector and roadside radar), onboard sensors (e.g. automotive radar or
camera), or communication devices from connected vehicles. Based on the traffic related data, we
identify the current state of the preceding vehicle and predict its future states when approaching the
intersection. If the preceding vehicle is not likely to be queued. Then we can forecast its future
trajectory based on its current speed. If the preceding vehicle has joined the queue when detecting,
we measure or estimate the location it queues, and predict the time it starts and the time it passes
the intersection based on shockwave theory. If the vehicle have not joined the queue but is very
likely to stop at queue at the intersection, we predict the time and location it joins the queue, and
the time it starts or passes the intersection when the lights turns green. Those key state parameters
will help envision the future trajectory of the vehicle based on some assumption of the vehicle
dynamics, e.g. acceleration and deceleration rate. The predicted preceding vehicle’s trajectory and
the SPaT information will be sent to the information integration component for further processing.

Information integration. We translate the trajectory and signal data into the boundary values of
the trajectory planning algorithm. As the study vehicle have to keep a safe distance away from the
preceding vehicle, in the graph-based trajectory planning algorithm, a node is valid only if its
distance to the intersection is greater than the distance of the preceding vehicle plus a safe distance.
As the study vehicle cannot pass the intersection during the red time, any edge that connects two
nodes at different sides of the intersection is invalid if the parent code is in the red time. Based on
above rules we can define the reachable region of trajectory planning in the temporal-spatial
domain, as shown in Figure 4. There are three typical cases for reachable region identification. If
the vehicle can pass the intersection during the current green phase, no constraints are needed. The
reachable region is then in a rhombus-shape. If the vehicle cannot keep the current speed to pass
the intersection due to traffic signal and have to stop, the red time will provide a horizontal
boundary. If there is a preceding vehicle, the reachable region is further shrank to keep a safe gap
from that vehicle. In addition, the vehicle is only allowed to stop at the intersection if it is the first
vehicle in the queue, or behind the preceding vehicle with a certain gap if it is not the first. A stop
at any other location is not permitted according to common sense.

A
Location ° Destination node Location Destination node. 1 Location Destinatio de
Stop line Stop line Stop line

Gap keeping  Preceding vehicle

.. Tin'L> .. Time >

Source node Source node Source node

° Iime

No Constraints Constraints from signal and stop line Constraints from preceding vehicle

Figure 4 Three typical cases of reachable regions

Scenario identification. In this component, we aim to identify the target state of the vehicle based
on its current state and signal timing information. In order to design an energy efficient trajectory
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while not sacrificing the travel time, we can set the target state as the final state of an uninformed
driver who tries to pass the intersection as soon as possible (but still under traffic rules). Here the
final state includes the location, time and speed when the vehicle is at the downstream of the stop
line. Note that one can choose another target state for trajectory planning based on the user’s need,
the value of time/energy, and the following driving. For example, there may be some energy saving
opportunity if we postpone the target departure time a little, but that mean delay in time and more
chance of missing the green phase of the downstream intersection. As the focus of this paper is
mainly on co-optimization of vehicle trajectory and powertrain, we will not discuss the different
guidelines and strategies to identify the possible scenarios and target states in detail. To simplify
the problem, we assume a reasonable target start is pre-determined before the integrated control.

Powertrain control and trajectory planning are two key components in the system. As discussed
in the introduction, most fine-grained powertrain control algorithm are coded in
MATLAB/Simulink based platform, such as Autonomie (16) and other customized models. For
this PHEB project, a rule-based SOC control and engine/motor operation strategy is also designed
in Simulink. It is difficult to put that Simulink model into the optimization loop directly, as it
requires the full speed profile as the input driving cycle. It is therefore impossible to calculate "per
second energy cost™" based on the instant state. In addition, it takes very long computation time to
go through the Simulink model for every possible trajectory to search for the optimal solution. A
feasible alternative approach for deep algorithm integration is:

Step 1. Based on the key logic of powertrain control strategy, we develop a simplified PHEB
powertrain model, and put it into our graph based optimization model as the edge cost to derive the
theoretical optimal speed profile.

Step 2: The MATLAB/Simulink model takes that speed profile as the initial driving cycle, fine-
tune it if it is not valid in engineering practice, and compute the powertrain parameters and energy
consumption for the whole process under the optimal powertrain strategy.

Step 3 (optional): Repeat Step 1 and 2 iteratively to find the optimal solution with high validity and
energy-efficiency. The number of iteration is mainly decided by real-time performance
requirement.

In this way, Simulink is taken out of the optimization loop to avoid the huge computation time, and
it is applied in Step 2 to ensure the solution is valid and effective in practice. The powertrain model
is then included as a module of the graph based trajectory planning model and we can co-optimize
both models at the same time. The whole process can be illustrated in the lower part of Figure 1.
We use the right arrows to show Step 1, down arrow to show Step 2, and dashed up arrow to show
the Step 3 which is optional.

In the following sections, we will describe the simplified PHEB powertrain model and graph based
trajectory planning model in detail to show the deep integration of both operations.

Simplified PHEB powertrain model
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For the study parallel pre-transmission PHEB, the supervisory control strategy considers three
propulsion control processes: PHEB depletion charge (DC), discharge dominant control (DDC),
and charging dominant control (CDC). As shown in Figure 5, when SOC is greater than the upper
bound of the control range (SOCu), the control strategy selects the PHEB DC mode. After the SOC
decreases below SOCu, the operation is in charge sustaining mode and the controller switches
between the DDC and CDC processes each time the specified values of SOCy, and SOCy, are
reached, ensuring safe and reliable battery operation. If SOC< SOCyy, the control strategy adopts
CDC.

Discharge dominant control (DDC): If the vehicle is under DDC mode, the PHEB can run in
engine propulsion mode, motor propulsion mode, and combined engine and motor propulsion mode
as show in Figure 5. The mode selection is based on wheel torque 7,,;,; and maximum engine torque
Teng-whimax, a5 Well as the estimate engine and motor efficiency neng—pwe AN Miror—pwe UNET

certain speed.

We first formulate the equation to calculate wheel torque. Assume the velocity of the vehicle is v,
the wheel speed is v /7., where 7. is the radius of the wheel, and the wheel torque demand is
formulated as:

Twht = Tr (ma + mgsinf + umgcos6 + %CDPasz) (1)
where m is the vehicle mass (kg), g is gravity constant, 6 is the road grade (rad), u is the rolling

resistance coefficient, Cp is the drag coefficient, p,is the air density (kg/m3) and A is the vehicle
frontal area (m?).

If the wheel torque 7,y is less than the maximum engine torque 7., g—whimax, 8 shown in the
bottom left of Figure 5, the vehicle need to determine whether an engine-only mode or a motor
only mode is needed based on the efficiency of both modes at current state. Based on the
Component energy efficiency database (CEED) based strategy and the parameters from Simulink
model, we develop interpolation methods for efficiency factor computation and mode choice.
Based on the mode selection result, if the PHEB is under engine propulsion mode, we compute the
engine torque as follows

Teng = Twhi/ (TldeIgbengb) 2)
where R, is the gear ratio, Ry, is the final drive ratio, 14, and 14, are the efficiency of gear box
and final drive. The engine speed is then computed as Eqgn (3). Based on the engine torque and
speed, the fuel consumption rate can be then calculated using engine map.

Weng = Rfd Rgb/rr v 3)

If the PHEB is under motor propulsion mode, the motor torque is calculated using the same
formula as Eqn (2).

Tmot = Twhi/(MraNgnRraRgp) (4)

Wmot = Rfd Rgb/rr v
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The battery power is then calculated based on the motor efficiency map. Note that if SOC is greater
than SOCyp, same motor propulsion mode model can be applied to the PHEB depletion charge
mode.

If the wheel torque 7, is greater than the maximum engine torque Ty g—whimax, the PHEB is
under combined engine and motor propulsion mode. Based on the Simulink model, we can get the
torque of motor and engine using following equations.

Tmot = Tmot,max (wmot)

Twhl
T =71 5
eng = L mabRraRgp mot ( )

Charging dominant control (CDC): if the vehicle is under CDC mode, the PHEB can run in
engine propulsion while charging mode, and combined propulsion mode, depending on the relation
between T,,p; and Tepg-whimasx-

As indicated in the bottom right of Figure 5, when engine propelling the vehicle while charging
battery (twn; < Teng-whimax), @n interpolation function was applied to find the optimal engine

torque rengjopt(weng)under the current speed, so the residual power is assigned to the battery for
charging. The motor (generator) torque for charging is

_ Twhl
Tmot,chg = Tengfom(weng ) B nfdng:Rdegb ©

Under combined engine and motor propulsion mode (7,5 > Teng—whimax), Similar as Equation
(5), we have

Teng = Tengmax (weng)

Twhl
T =71 7
mot 77angbRraRgn eng ( )

Regenerated Braking: As the PHEB is capable of converting vehicle kinetic energy into a storable
form of battery energy during braking, the regenerated braking power is formulated as

M/reg = Twhni " Wmot " NMwhMNfd Mmot Mbatt (8)
where nwn is the wheel drive efficiency, nmot is motor efficiency, and nsaet IS battery efficiency.

For combined engine and motor propulsion mode and engine propelling the vehicle while charging
mode, we also need to determine the weights of fuel consumption rate and battery discharging
power (or charging power) to derive the cost of each edge in the trajectory planning. The impact
of mode choice should be considered in a relatively long term, as the bus may be under operation
for 8 hours before it has the chance to charge in the charging facility. Therefore, we estimate the
weights based on the mileage that the unit fuel consumption or battery power can propel the bus

10
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under engine-only or motor only mode. The final cost is then the weighted sum of fuel
consumption rate and battery power, with kW as the unit. The simplified PHEB powertrain model
provide a direct link to connect vehicle dynamic state (speed, acceleration and road grade) to the
energy consumption. This model is then integrated into the graph-based trajectory planning
algorithm as the cost of each edge.

Trajectory Planning

As stated in the previous section, the trajectory planning algorithm synthesizes the traffic/signal
boundary condition from information integration module, target states information from scenario
identification module, and the energy cost from the powertrain module. We then develop a graph
model to solve the trajectories planning problem with constraints on target travel time T, target
distance X and target speed v,. To formulate this graph model, we discretize the time and space
into fixed time step At and distance grid Ax. The vehicle speed domain is therefore discretized with

% as the step. At each node of the proposed directed graph G=(V, E), we assign a unique 3-D
coordinate (t, x, v) which describes the dynamic state of the vehicle, where t € (0, T] is the time (in
second), x € [0, X] is the distance to the intersection (in meter) and v € [0, v;] is the speed (in m/s),

where v, is the speed limit In this graph. As the study vehicle have to keep a safety distance Xgap
from the location of the preceding vehicle xpre (t) at certain time. We have

x(t) = Xpre (t) + Xgap (9)

We also have v(t)>0 if x(t) = xpre queue as the vehicle is only allowed to stop right behind the

queue position of preceding vehicle (or the stop line if there is no preceding vehicle). There is an
edge from Vi (i1, X1, V1) to V2 (t2, X2, v2) if and only if following rules are satisfied:

1) Time at V2 is consecutive with time at V1: t, = t; + At;

2) Consistency on distance and speed: x, = x; + v;At

3) Acceleration constraint: @i, < 2—2 < aymax, Where apmi, and amg, are the maximum
deceleration rate and maximum acceleration rate for the study diesel truck respectively.

4) Signal constraint: if t; is in the red time, x; - x, > 0 or x; > 0, x, = 0 to ensure there is no
edge that connects two nodes at different side of the intersection if the parent code is in the red time.

Based on the PHEB powertrain model, we define the cost on edge V; — V, as the weighted energy
consumption during this state transition process. The road grade information is also integrated in
the model (details in (15)). At this point, the energy consumption minimization problem is
converted into a problem to find the shortest path from the source node Vs(0, X, vs) to the destination
node Vg (T, 0, vq) in the directed graph G=(V, E). The Dijkstra's algorithm (17) is then applied to
solve this single-source shortest path problem.

The deep integration based trajectory optimization algorithm is then interfaced with the
Matlab/Simulink platform for further trajectory fine-tuning and powertrain parameters and energy
consumption computation. As shown in Figure 3, the three steps can repeat in a loop to improve
the co-optimization performance, if the computation time allows.

11
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NUMERICAL EXPERIMENT
Eco-Approach and Departure

In this section, the developed VD/PT co-optimization algorithm is applied to simulate vehicle
trajectories of a PHEB at a hypothetical signalized intersection with different entry times. The
length of the study area is 300 m (i.e., from 300 m upstream of the intersection to the stop line).
The speed limit is set to 40 mph. The time of the green phase is 27 s, the time for yellow is 3 s and
the time for the red phase is 30 s. Six different entry times in a cycle are tested: the 5th second in
green (G5), the 15th second in green (G15), the 25th second in green (G25), the 5th second in red
(R5), the 15th second in red (R15), and the 25th second in red (R25). We also test multiple initial
speeds from 10 mph to 40 mph, with 10 mph as the increment.

In Figure 7, we show PHEB trajectories for three Eco-Approach and Departure (EAD) cases. The
blue solid lines represent the baseline trajectories for uninformed driver (without EAD). The black
dashed lines represent the trajectories generated using the trigonometric EAD algorithm which
was widely applied in previous studies (4, 9). The red dotted lines and circles represent the
trajectories generated using the integrated control algorithm developed in this paper. We also show
the signal phases using their corresponding colors. Note that in each subfigure, we overlay the
trajectories of the PHEB under six different entry time scenarios (i.e., G5, G15, G25, R5, R15, and
R25). The energy savings reported along the x-axis correspond to the six entry time scenarios.
These are the energy savings of the newly developed EAD algorithm as compared to the baseline
case of uninformed driver without EAD.

Figure 7 (a) shows the comparison of PHEB trajectories during CDC mode when the PHEB mainly
relies on power from the engine. Under CDC operation, the newly developed EAD algorithm
results in an average energy savings of 26% when compared with the baseline PHEB with
uninformed driver. The new EAD algorithm also results in an average of 10% less energy
consumption than the trigonometric EAD algorithm. Figure 7(b) shows the comparison of PHEB
trajectories during DDC mode. The newly developed EAD algorithm results in an average energy
savings of 31% when compared with the baseline PHEB with uninformed driver. The new EAD
algorithm also results in an average of 10% less energy consumption than the trigonometric EAD
algorithm.

For both CDC and DDC mode, the proposed methods show significant energy saving benefit for
almost all scenarios. Specifically, when the vehicle approaches the intersection area at the
beginning of the red phase, the energy saving is over 40% for CDC and 50% for DDC. If the
vehicle can pass the intersection directly in the green time without any delay, the improvement on
energy is not as significant because there is not too much opportunity for trajectory optimization
in this case.

12
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Figure 7. Trajectories and energy saving of proposed EAD model
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We then take the optimal trajectory as the input driving cycle and applied it to the
MATLAB/Simulink model for powertrain-parameters and energy consumption fine-tuning. Table
2 shows the fuel and battery consumption for PHEB under both CDC and DDC mode. Comparing
with baseline method and trigonometric method, the proposed method shows significant energy
saving benefits in this table.

Table 2 (a) Fuel and Battery consumption for PHEB under Charge-Dominated Control

Entry Speed 10 mph 20 mph 30 mph 40 mph
Consumption Fuel (g) Battery Fuel(g) Battery Fuel(g) Battery Fuel(g) Battery
(- if Charging) (kwh) (kwh) (kwh) (kwh)

Baseline 0.20 0.21 0.15 0.13 0.13 0.07 0.11 -0.06
Old EAD 0.20 0.04 0.20 -0.20 0.17 -0.26 0.09 -0.04
New EAD 0.22 -0.15 0.17 -0.17 0.15 -0.22 0.08 -0.17

Table 2 (b) Fuel and Battery consumption for PHEB under Discharge-Dominated Control

Entry Speed 10 mph 20 mph 30 mph 40 mph
Consumption Fuel (g) Battery Fuel(g) Battery Fuel(g) Battery Fuel(g) Battery
(- if Charging) (kwh) (kwh) (kwh) (kwh)

Baseline 0.12 0.52 0.10 0.29 0.08 0.22 0.06 0.08
Old EAD 0.10 0.49 0.07 0.33 0.06 0.22 0.05 0.09
New EAD 0.06 0.50 0.06 0.32 0.05 0.21 0.04 0.09

Eco-Stop and Launch

The Eco-Stop and Launch (ESL) application can be considered as a special case of EAD. It is
similar to the stop scenario in EAD, but instead of stopping at a traffic light, the PHEB is to stop at
a bus stop or a stop sign. To test the eco-stop process, we assume the initial distance to the bus stop
(or stop sign) to be 200 m, and the entry speed to be 30 mph. We then use the new EAD algorithm
to construct the most energy-efficient deceleration trajectories for different time durations. A
similar approach is applied to the eco-launch process to determine the most energy-efficient
acceleration trajectories when accelerating from a stop.

Figure 8(a) shows the results of the eco-stop and eco-launch processes in CDC operation. In the top
figure, we label the total energy consumption (in kJ) of the deceleration process below the optimal
trajectories (red solid curves) for different deceleration durations from 20 s to 30 s with a 2 s
increment. It shows that if the PHEB takes 28 s to traverse the 200 m distance to a full stop at the
destination, the total energy consumption would be lowest at 4.9 kJ. That is 88% less than the
baseline method, which is derived from the previously developed trigonometric model. In the
bottom figure, we note the total energy consumption of the acceleration process above the optimal
trajectories for different acceleration durations. The PHEB would consume the least fuel
consumption of 247 kJ if it takes 22 s to traverse the 200 m distance to get to the final speed of 30
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mph. This eco-launch acceleration profile achieves 5% fuel savings when compared with the
baseline model. Figure 8(a) also shows other options for eco-stop and launch for the different
deceleration/acceleration durations. It is observed that the total energy consumption has a convex
relationship with the deceleration/acceleration duration. Thus, the globally optimal trajectory with
respect to total fuel consumption and time can be found. Note that if the PHEB needs to save time
in order to catch up with the schedule, it may choose a faster stop and launch profile at the expense
of energy efficiency.

Figure 8(b) shows the results of the eco-stop and eco-launch processes in DDC operation. During
the eco-stop process, the PHEB may gain additional energy from regenerated braking if it
decelerates slowly to a stop. The net energy savings as compared to the baseline range from 10 kJ
(50%) to for the deceleration duration of 20 s to 22 kJ (103%) for the deceleration duration of 30 s.
Note that the total energy consumption has a monotonic relationship with the deceleration
duration—the shorter the duration, the more total energy consumption. Thus, the selection of the
stop and launch profile will depend more on the time constraint and practicality. During the eco-
launch process, the energy consumption is not as sensitive to how the PHEB accelerates within the
same amount of acceleration duration. The baseline and the fastest optimal trajectories would both
take 22 s and consume 261 and 248 kJ, respectively. A slower acceleration of 24 s would save 14
kJ or 5%.
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Figure 8. Trajectories of Eco-Stop and Launch
Eco-Cruise

The Eco-Cruise (EC) application can be considered as another special case of EAD. It is similar to
the constant speed scenario of EAD in Figure 1, but in addition to cruising through a signalized
intersection, it can also be applied to cruising in midblock or between stops. As cruising does not
involve deceleration and acceleration, the key aspect to address with respect to energy consumption
is the impact of road grade. For any cruising speed, an optimal vehicle trajectory can be designed
for a specific terrain.

Figure 9 shows examples in which the PHEB enters a road segment with the distance of 260 m at
the speed of 13 m/s under CDC operation mode. If the road segment is on a flat terrain, the optimal
solution is to simply cruise at 13 m/s for 20 s. However, if the road segment is on a rolling terrain,
then the PHEB needs to adjust the cruising speed in response to the road grade in order to minimize
the energy consumption. As shown in Figure 10, the EC application suggests different speed
profiles for different types of terrain. In the CDC mode, for a crest vertical curve with 5% uphill in
the first half and 5% downhill in the second half, the optimal speed profile suggested by EC
(represented by the blue solid curve) saves 8.6% fuel as compared with the baseline with a constant
speed. The optimal speed profile is an M-shaped curve with the minimum at the peak point of the
crest vertical curve. For a sag vertical curve with 5% downbhill in the first half and 5% uphill in the
second half, the optimal speed profile suggested by EC (represented by the red dotted curve) saves
17% fuel. The optimal speed profile is a W-shaped curve with the maximum at the bottom of the
sag vertical curve.
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Eco-Cruising, CGDC
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Figure 9. Eco-Cruise under CDC mode
CONCLUSIONS

In this paper, we developed an integrated vehicle dynamic and powertrain control model to support
the eco-operation solution for a plug-in hybrid electric bus (PHEB) and improve the vehicle energy
efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6
components, including traffic/signal timing information acquirement, information integration,
scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for
validation and fine-tuning. Based on the key logic of powertrain control strategy of PHEB, we
develop a simplified PHEB powertrain model, and put it into the graph based optimization model
as the edge cost to derive the theoretical optimal speed profile. The MATLAB/Simulink model
takes that speed profile as the initial driving cycle, fine-tune it if it is not valid in engineering
practice, and compute the powertrain parameters and energy consumption for the whole process
under the optimal powertrain strategy. The proposed mode is validated in multiple numerical tests
under EAD, ESL and EC scenarios, and shows significant performance in energy-saving, e.g.
26%-31 in EAD, 5%~103% in ESL, and 9%~17% in EC. Meanwhile, the proposed algorithm is
computational efficient due to the dynamic programming concept when formulating the problem,
which is beneficial in real world implementation. Directions for future research can be summarized
as follows:

(1) We are now working on implementation of the proposed model in both microsimulation (e.g.
VISSIM) and Dyno-In-The-Loop testbed, so that more realistic and reliable data will be collected
and analyzed to validate and improve the model.

(2) The proposed model is applicable to other types of vehicles and powertrains, such as light-duty
and heavy-duty vehicle, EVs and PHEVSs, by replacing the current powertrain module with other
models. More features of other powertrains can be evaluated in the proposed framework.

(3) In the real world traffic, the acquisition of traffic information is constrained by the
communication and sensing range, and the timing of actuated signals also has high uncertainty. It
is a great challenge to design a robust speed profile that would adapt the dynamic and uncertain
downstream traffic and signal conditions. As a future work, a Partially Observed Markov Decision
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Process (POMDP) based approach is therefore developed to provide a proactive approach rather
than a passive way to adapt to the dynamic uncertainty.
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