Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme

Journal Article · · Journal of Computational Physics
We present here a Lagrangian discontinuous Galerkin (DG) hydrodynamic method that is up to third-order accurate using subcell mesh stabilization (SMS) for compressible flows on quadratic meshes in two-dimensional (2D) Cartesian coordinates. Similar to the second-order accurate Lagrangian DG method with linear meshes, the physical evolution equations for the specific volume, velocity, and specific total energy are discretized using a modal DG method with Taylor series polynomials. The Riemann velocity at the vertices of a curvilinear cell, and the corresponding surface forces, are calculated by solving a multidirectional approximate Riemann problem. Curvilinear cells (e.g., quadratic quadrilateral meshes in this work) have many deformational degrees of freedom, and with these cells, they can deform in unphysical ways. Likewise, the Riemann solution at an edge vertex differs from the one at the corner of a cell. With SMS, each quadratic quadrilateral cell is decomposed into four quadrilateral subcells, that move in a Lagrangian manner. The edge vertex is surrounded by four subcells so that it is similar to the vertex at the cell corner. SMS can detect inconsistent density fields between the cell and subcells. The difference between these two density fields is used to correct the stress (pressure) input to the Riemann solver. This SMS scheme enables stable mesh motion and accurate solutions in the context of a Lagrangian high-order DG method that is up to third-order with quadratic cells. We also present effective limiting strategies that ensure monotonicity of the primitive variables with the high-order DG method. This Lagrangian DG hydrodynamic method with SMS conserves mass, momentum, and total energy. A suite of test problems are calculated to demonstrate the designed order of accuracy (up to third-order accurate) of this method, and that the Lagrangian DG method using SMS preserves cylindrical symmetry on 1D radial flow problems with an equal-angle polar quadratic mesh.
Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
89233218CNA000001
OSTI ID:
1542835
Alternate ID(s):
OSTI ID: 1635997
Report Number(s):
LA-UR--18-26689
Journal Information:
Journal of Computational Physics, Journal Name: Journal of Computational Physics Vol. 386; ISSN 0021-9991
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English

Similar Records

A fourth-order Lagrangian discontinuous Galerkin method using a hierarchical orthogonal basis on curvilinear grids
Journal Article · Wed Oct 27 20:00:00 EDT 2021 · Journal of Computational and Applied Mathematics · OSTI ID:1840882

Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods
Journal Article · Mon Jun 04 20:00:00 EDT 2018 · Journal of Computational Physics · OSTI ID:1477650

A Lagrangian discontinuous Galerkin hydrodynamic method
Journal Article · Sun Dec 10 19:00:00 EST 2017 · Computers and Fluids · OSTI ID:1414156