Revealing excitonic structure and charge transfer in photosynthetic proteins by time-resolved circular dichroism spectroscopy
- Purdue University, West Lafayette, IN (United States); Purdue University
The author has designed and built a time-resolved circular dichroism (CD) spectrometer with previously unmatched sensitivity making for the first time this technique suitable to studies of energy transfer and structure of photosynthetic light-harvesting and charge transfer complexes. The nanosecond version of the new CD spectrometer was successfully applied to studies of the Fenna Matthews Olson pigment-protein complex showing a number of features incompatible with currently proposed Hamiltonians and providing a wealth in information for refining our current understanding of this complex structure and dynamics. The work on femtosecond variant of ultra sensitive CD spectrometer was initiated and demonstrated its capability to resolve CD differences in the order of 10-8, which is 2-3 orders of magnitude better than previously proposed spectrometers.
- Research Organization:
- Purdue University, West Lafayette, IN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
- DOE Contract Number:
- SC0001341
- OSTI ID:
- 1509889
- Report Number(s):
- DOE-Purdue--001341
- Country of Publication:
- United States
- Language:
- English
Similar Records
Structure, Function and Reconstitution of Antenna Complexes of Green Photosynthetic Bacteria