Probing the Active Sites of MoS2 Based Hydrotreating Catalysts Using Modulation Excitation Spectroscopy
- Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)
- Technical Univ. of Denmark (DTU), Lyngby (Denmark); Haldor Topsoes Alle1, Lyngby (Denmark)
- Technical Univ. of Denmark (DTU), Lyngby (Denmark)
- Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States)
The reactive surface sites of MoS2 hydrotreating catalysts (unpromoted as well as Co- and Ni-promoted) supported on MgAl2O4 spinel were investigated with respect to the substitution of sulfur by oxygen using in situ XAS coupled with modulation excitation spectroscopy (MES). Specifically, MES experiments were carried out by periodically cycling between a H2O and H2S containing hydrogen gas mixture at 400 °C. Due to the low fraction of S–O exchange, conventional XANES and EXAFS data hardly showed any changes when these catalysts were exposed to increasing ratios of H2O to H2S in an H2 atmosphere. XANES and EXAFS data extracted at the Mo K-edge by MES analysis showed that for approximately 1% of the Mo atoms, sulfur atoms are replaced by oxygen atoms when exposed to H2O, causing partial oxidation of these active sites. The reaction is reversible and Mo returns to its initial sulfide phase when H2O is removed and H2S is supplied in the feed. In the case of Co- and Ni-promoted catalysts, the magnitude of S–O exchange was found to be reduced, indicating the beneficial effect of promotion. MES at the Ni K-edge showed that Ni was oxidized during H2O exposure, which in turn delayed the Mo oxidation in the Ni-promoted catalyst. The structures of these catalysts under S–O exchange were modeled using density functional theory (DFT) calculations, showing that the edge atoms are affected strongly. For all three catalysts, OH substitution is more favorable, while O substitution could be possible at high H2O pressure for unpromoted MoS2. Mo K-edge XANES spectra calculated using these simulated structures support the results obtained from the MES experiments. In conclusion, the presented approach using MES in combination with XAS and supported by DFT can be extended in general to catalysts under operando conditions and is thus a useful tool for determination of the active site on an atomic-scale.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1505429
- Journal Information:
- ACS Catalysis, Journal Name: ACS Catalysis Journal Issue: 3 Vol. 9; ISSN 2155-5435
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Influence of H2O and H2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl2O4 for hydrodeoxygenation of ethylene glycol
The versatile role of nickel in Ni-MoS/sub 2//Al/sub 2/O/sub 3/ hydrotreating catalysts as shown by the use of probe molecules
DFT calculations of unpromoted and promoted MoS{sub 2}-based hydrodesulfurization catalysts
Journal Article
·
Sat Dec 09 23:00:00 EST 2017
· Applied Catalysis. A, General
·
OSTI ID:1425962
The versatile role of nickel in Ni-MoS/sub 2//Al/sub 2/O/sub 3/ hydrotreating catalysts as shown by the use of probe molecules
Conference
·
Thu Dec 31 23:00:00 EST 1987
·
OSTI ID:5239507
DFT calculations of unpromoted and promoted MoS{sub 2}-based hydrodesulfurization catalysts
Journal Article
·
Fri Oct 01 00:00:00 EDT 1999
· Journal of Catalysis
·
OSTI ID:20000962