Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermal performance and potential annual energy impact of retrofit thin-glass triple-pane glazing in US residential buildings

Journal Article · · Building Simulation

Heat transfer through the building envelope and associated air leakage comprise the largest HVAC loads in most climates, and windows, which are known as the weakest link in the thermal envelope, are responsible for about 5 Quads, or approximately 10%, of building energy use. Therefore, windows offer a significant opportunity for building energy savings. High performance windows, such as triple glazing, though comprised of less than 2% of all US window sales in 2016 and has remained stagnant because they typically require a full and expensive redesign of the typical window sash and frame. One potential low incremental cost solution to kick start the market is upgrading the glazing with a thin-glass triple-pane design that does not require modifications to existing frame and sash. Here in this work, we first define the characteristics and performance of current “typical” residential windows through an examination of the National Fenestration Rating Council (NFRC) Certified Products Directory (CPD). With knowledge of the typical window, we determine the potential thermal performance impact of replacing typical glazing with thin-glass triple-pane glazing. Finally, with an understanding of the potential improvements to traditional performance metrics, such as U-factor, we show the energy savings potential of the thin-triple glazing in place of typical low-e windows in residential buildings is 16% in heating dominated climates such as Minneapolis, MN, 12% in mixed climates such as Washington DC, and 7% in cooling dominated climates such as Houston, TX.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1494111
Journal Information:
Building Simulation, Journal Name: Building Simulation Journal Issue: 1 Vol. 12; ISSN 1996-3599
Publisher:
Springer
Country of Publication:
United States
Language:
English

References (1)

The Design and Testing of a Highly Insulating Glazing System for Use With Conventional Window Systems journal February 1989

Similar Records

Laboratory and field validation of the performance benefits and costs of thin triple-pane windows in residential buildings
Journal Article · Tue Aug 13 00:00:00 EDT 2024 · Science and Technology for the Built Environment · OSTI ID:2483499

Evaluation of Thin Triple-Pane Windows in the PNNL Lab Homes
Technical Report · Fri Apr 30 00:00:00 EDT 2021 · OSTI ID:1811300

Results from Laboratory and Field Study of Thin Triple Pane Windows
Conference · Fri Dec 30 23:00:00 EST 2022 · OSTI ID:2202438