skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks

Abstract

Over one million tons of CS 2 are produced annually, and emissions of this volatile and toxic liquid, known to generate acid rain, remain poorly controlled. As such, materials capable of reversibly capturing this commodity chemical in an energy-efficient manner are of interest. Recently, we detailed diamine-appended metal–organic frameworks capable of selectively capturing CO 2 through a cooperative insertion mechanism that promotes efficient adsorption–desorption cycling. We therefore sought to explore the ability of these materials to capture CS 2 through a similar mechanism. Employing crystallography, spectroscopy, and gas adsorption analysis, we demonstrate that CS 2 is indeed cooperatively adsorbed in N,N-dimethylethylenediamine-appended M 2(dobpdc) (M = Mg, Mn, Zn; dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), via the formation of electrostatically paired ammonium dithiocarbamate chains. In the weakly thiophilic Mg congener, chemisorption is cleanly reversible with mild thermal input. Finally, this work demonstrates that the cooperative insertion mechanism can be generalized to other high-impact target molecules.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [2];  [4];  [4];  [4]; ORCiD logo [5];  [4];  [4];  [4]; ORCiD logo [4]; ORCiD logo [6]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  6. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1493273
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

McGuirk, C. Michael, Siegelman, Rebecca L., Drisdell, Walter S., Runčevski, Tomče, Milner, Phillip J., Oktawiec, Julia, Wan, Liwen F., Su, Gregory M., Jiang, Henry Z. H., Reed, Douglas A., Gonzalez, Miguel I., Prendergast, David, and Long, Jeffrey R. Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks. United States: N. p., 2018. Web. doi:10.1038/s41467-018-07458-6.
McGuirk, C. Michael, Siegelman, Rebecca L., Drisdell, Walter S., Runčevski, Tomče, Milner, Phillip J., Oktawiec, Julia, Wan, Liwen F., Su, Gregory M., Jiang, Henry Z. H., Reed, Douglas A., Gonzalez, Miguel I., Prendergast, David, & Long, Jeffrey R. Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks. United States. doi:10.1038/s41467-018-07458-6.
McGuirk, C. Michael, Siegelman, Rebecca L., Drisdell, Walter S., Runčevski, Tomče, Milner, Phillip J., Oktawiec, Julia, Wan, Liwen F., Su, Gregory M., Jiang, Henry Z. H., Reed, Douglas A., Gonzalez, Miguel I., Prendergast, David, and Long, Jeffrey R. Mon . "Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks". United States. doi:10.1038/s41467-018-07458-6. https://www.osti.gov/servlets/purl/1493273.
@article{osti_1493273,
title = {Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks},
author = {McGuirk, C. Michael and Siegelman, Rebecca L. and Drisdell, Walter S. and Runčevski, Tomče and Milner, Phillip J. and Oktawiec, Julia and Wan, Liwen F. and Su, Gregory M. and Jiang, Henry Z. H. and Reed, Douglas A. and Gonzalez, Miguel I. and Prendergast, David and Long, Jeffrey R.},
abstractNote = {Over one million tons of CS2 are produced annually, and emissions of this volatile and toxic liquid, known to generate acid rain, remain poorly controlled. As such, materials capable of reversibly capturing this commodity chemical in an energy-efficient manner are of interest. Recently, we detailed diamine-appended metal–organic frameworks capable of selectively capturing CO2 through a cooperative insertion mechanism that promotes efficient adsorption–desorption cycling. We therefore sought to explore the ability of these materials to capture CS2 through a similar mechanism. Employing crystallography, spectroscopy, and gas adsorption analysis, we demonstrate that CS2 is indeed cooperatively adsorbed in N,N-dimethylethylenediamine-appended M2(dobpdc) (M = Mg, Mn, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), via the formation of electrostatically paired ammonium dithiocarbamate chains. In the weakly thiophilic Mg congener, chemisorption is cleanly reversible with mild thermal input. Finally, this work demonstrates that the cooperative insertion mechanism can be generalized to other high-impact target molecules.},
doi = {10.1038/s41467-018-07458-6},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Mon Dec 03 00:00:00 EST 2018},
month = {Mon Dec 03 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Evaluating metal–organic frameworks for natural gas storage
journal, January 2014

  • Mason, Jarad A.; Veenstra, Mike; Long, Jeffrey R.
  • Chemical Science, Vol. 5, Issue 1, p. 32-51
  • DOI: 10.1039/C3SC52633J

Carbon Dioxide Capture in Metal�Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

637. The stability of transition-metal complexes
journal, January 1953

  • Irving, H.; Williams, R. J. P.
  • Journal of the Chemical Society (Resumed), Vol. 0, Issue 0, p. 3192-3210
  • DOI: 10.1039/jr9530003192

Introduction to Metal�Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Selective gas adsorption and separation in metal�organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Methane Storage in Metal�Organic Frameworks: Current Records, Surprise Findings, and Challenges
journal, July 2013

  • Peng, Yang; Krungleviciute, Vaiva; Eryazici, Ibrahim
  • Journal of the American Chemical Society, Vol. 135, Issue 32, p. 11887-11894
  • DOI: 10.1021/ja4045289

Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444