skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope

Abstract

We derive cosmological constraints using a galaxy cluster sample selected from the 2500 deg(2) SPT-SZ survey. The sample spans the redshift range 0.25 < z < 1.75 and contains 343 clusters with SZ detection significance xi > 5. The sample is supplemented with optical weak gravitational lensing measurements of 32 clusters with 0.29 < z < 1.13 (from Magellan and Hubble Space Telescope) and X-ray measurements of 89 clusters with 0.25 < z < 1.75 (from Chandra). We rely on minimal modeling assumptions: (i) weak lensing provides an accurate means of measuring halo masses, (ii) the mean SZ and X-ray observables are related to the true halo mass through power-law relations in mass and dimensionless Hubble parameter E(z) with a priori unknown parameters, and (iii) there is (correlated, lognormal) intrinsic scatter and measurement noise relating these observables to their mean relations. We simultaneously fit for these astrophysical modeling parameters and for cosmology. Assuming a flat nu Lambda CDM model, in which the sum of neutrino masses is a free parameter, we measure Omega(m) = 0.276 +/- 0.047, sigma(8) = 0.781 +/- 0.037, and sigma(8)(Omega(m)/0.3)(0.2) = 0.766 +/- 0.025. The redshift evolutions of the X-ray Y-X-mass and M-gas-mass relations are bothmore » consistent with self-similar evolution to within 1 sigma. The mass slope of the Y-X-mass relation shows a 2.3 sigma deviation from self-similarity. Similarly, the mass slope of the M-gas-mass relation is steeper than self-similarity at the 2.5 sigma level. In a nu omega CDM cosmology, we measure the dark energy equation-of-state parameter w = -1.55 +/- 0.41 from the cluster data. We perform a measurement of the growth of structure since redshift z similar to 1.7 and find no evidence for tension with the prediction from general relativity. This is the first analysis of the SPT cluster sample that uses direct weak-lensing mass calibration and is a step toward using the much larger weak-lensing data set from DES. We provide updated redshift and mass estimates for the SPT sample.« less

Authors:
ORCiD logo; ORCiD logo; ; ; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; more »; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; ; ORCiD logo; ; ; ORCiD logo; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Aeronautics and Space Administration (NASA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
SPT
OSTI Identifier:
1490847
Alternate Identifier(s):
OSTI ID: 1591754
Report Number(s):
arXiv:1812.01679; FERMILAB-PUB-18-692-AE
Journal ID: ISSN 1538-4357; 1707055
Grant/Contract Number:  
AC02-07CH11359; AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Volume: 878; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmological parameters; cosmology: observations; galaxies: clusters: general; large-scale structure of universe

Citation Formats

Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., and Zenteno, A. Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab1f10.
Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., & Zenteno, A. Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. United States. https://doi.org/10.3847/1538-4357/ab1f10
Bocquet, S., Dietrich, J. P., Schrabback, T., Bleem, L. E., Klein, M., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Bayliss, M., Benson, B. A., Brodwin, M., Bulbul, E., Canning, R. E. A., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dobbs, M. A., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Grandis, S., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Khullar, G., Knox, L., Kraft, R., Lee, A. T., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Morris, R. G., Padin, S., Patil, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Strazzullo, V., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., and Zenteno, A. 2019. "Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope". United States. https://doi.org/10.3847/1538-4357/ab1f10. https://www.osti.gov/servlets/purl/1490847.
@article{osti_1490847,
title = {Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope},
author = {Bocquet, S. and Dietrich, J. P. and Schrabback, T. and Bleem, L. E. and Klein, M. and Allen, S. W. and Applegate, D. E. and Ashby, M. L. N. and Bautz, M. and Bayliss, M. and Benson, B. A. and Brodwin, M. and Bulbul, E. and Canning, R. E. A. and Capasso, R. and Carlstrom, J. E. and Chang, C. L. and Chiu, I. and Cho, H-M. and Clocchiatti, A. and Crawford, T. M. and Crites, A. T. and Haan, T. de and Desai, S. and Dobbs, M. A. and Foley, R. J. and Forman, W. R. and Garmire, G. P. and George, E. M. and Gladders, M. D. and Gonzalez, A. H. and Grandis, S. and Gupta, N. and Halverson, N. W. and Hlavacek-Larrondo, J. and Hoekstra, H. and Holder, G. P. and Holzapfel, W. L. and Hou, Z. and Hrubes, J. D. and Huang, N. and Jones, C. and Khullar, G. and Knox, L. and Kraft, R. and Lee, A. T. and Linden, A. von der and Luong-Van, D. and Mantz, A. and Marrone, D. P. and McDonald, M. and McMahon, J. J. and Meyer, S. S. and Mocanu, L. M. and Mohr, J. J. and Morris, R. G. and Padin, S. and Patil, S. and Pryke, C. and Rapetti, D. and Reichardt, C. L. and Rest, A. and Ruhl, J. E. and Saliwanchik, B. R. and Saro, A. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Stalder, B. and Stanford, S. A. and Staniszewski, Z. and Stark, A. A. and Story, K. T. and Strazzullo, V. and Stubbs, C. W. and Vanderlinde, K. and Vieira, J. D. and Vikhlinin, A. and Williamson, R. and Zenteno, A.},
abstractNote = {We derive cosmological constraints using a galaxy cluster sample selected from the 2500 deg(2) SPT-SZ survey. The sample spans the redshift range 0.25 < z < 1.75 and contains 343 clusters with SZ detection significance xi > 5. The sample is supplemented with optical weak gravitational lensing measurements of 32 clusters with 0.29 < z < 1.13 (from Magellan and Hubble Space Telescope) and X-ray measurements of 89 clusters with 0.25 < z < 1.75 (from Chandra). We rely on minimal modeling assumptions: (i) weak lensing provides an accurate means of measuring halo masses, (ii) the mean SZ and X-ray observables are related to the true halo mass through power-law relations in mass and dimensionless Hubble parameter E(z) with a priori unknown parameters, and (iii) there is (correlated, lognormal) intrinsic scatter and measurement noise relating these observables to their mean relations. We simultaneously fit for these astrophysical modeling parameters and for cosmology. Assuming a flat nu Lambda CDM model, in which the sum of neutrino masses is a free parameter, we measure Omega(m) = 0.276 +/- 0.047, sigma(8) = 0.781 +/- 0.037, and sigma(8)(Omega(m)/0.3)(0.2) = 0.766 +/- 0.025. The redshift evolutions of the X-ray Y-X-mass and M-gas-mass relations are both consistent with self-similar evolution to within 1 sigma. The mass slope of the Y-X-mass relation shows a 2.3 sigma deviation from self-similarity. Similarly, the mass slope of the M-gas-mass relation is steeper than self-similarity at the 2.5 sigma level. In a nu omega CDM cosmology, we measure the dark energy equation-of-state parameter w = -1.55 +/- 0.41 from the cluster data. We perform a measurement of the growth of structure since redshift z similar to 1.7 and find no evidence for tension with the prediction from general relativity. This is the first analysis of the SPT cluster sample that uses direct weak-lensing mass calibration and is a step toward using the much larger weak-lensing data set from DES. We provide updated redshift and mass estimates for the SPT sample.},
doi = {10.3847/1538-4357/ab1f10},
url = {https://www.osti.gov/biblio/1490847}, journal = {The Astrophysical Journal (Online)},
issn = {1538-4357},
number = 1,
volume = 878,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: The SPT-SZ 2500 deg2 cluster cosmology sample, selected to have redshift z > 0.25 and detection significance ξ > 5. Top panel: The distribution of clusters in redshift and mass (assuming a fiducial observable–mass relation). Black points show the full sample, blue dots mark those 89 clusters formore » which X-ray follow-up data from Chandra are available, and green triangles (orange squares) mark those 19 with Magellan/Megacam (13 with the Hubble Space Telescope) WL follow-up data. Bottom panel: Histograms with the same color coding. While the X-ray follow-up dataset covers the entire redshift range, the WL follow-up covers 0.25 < z ≲1.1.« less

Save / Share:

Works referenced in this record:

Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
journal, March 2017


Cosmological Parameters from Observations of Galaxy Clusters
journal, September 2011


Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses
journal, February 2014


The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package
journal, August 2018


A measurement of CMB cluster lensing with SPT and DES year 1 data
journal, February 2018


Spt-Gmos: a Gemini/Gmos-South Spectroscopic Survey of Galaxy Clusters in the Spt-Sz Survey
journal, November 2016


Year two instrument status of the SPT-3G cosmic microwave background receiver
conference, August 2018

  • Carter, Faustin W.; Cecil, Thomas W.; Chang, Clarence L.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • https://doi.org/10.1117/12.2312426

BICEP2 and Keck array: upgrades and improved beam characterization
conference, August 2014


The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant: 6dFGS: BAOs and the local Hubble constant
journal, July 2011


Galaxy Clusters Discovered via the Sunyaev-Zel'Dovich Effect in the 2500-Square-Degree Spt-Sz Survey
journal, January 2015


pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms)
journal, October 2016


Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology
journal, December 2015


X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton
journal, January 2019


The 10 Meter South Pole Telescope
journal, May 2011

  • Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 903
  • https://doi.org/10.1086/659879

Baryon content of massive galaxy clusters at 0.57 <  z  < 1.33
journal, November 2015


Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 <z < 1.25
journal, May 2018


Survey strategy optimization for the Atacama Cosmology Telescope
conference, August 2016

  • De Bernardis - for the ACT collaboration, Francesco; Stevens, Jason; Hasselfield, M.
  • Observatory Operations: Strategies, Processes, and Systems VI
  • https://doi.org/10.1117/12.2232824

Cosmological Constraints from Galaxy Clusters in the 2500 Square-Degree Spt-Sz Survey
journal, November 2016


Sunyaev–Zel’dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters
journal, December 2018


Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology
journal, October 2008


MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics
journal, October 2009


CMB lensing tomography with the DES Science Verification galaxies
journal, January 2016


Constraining the Redshift Evolution of First Radio Sources in rcs1 Galaxy Clusters
journal, June 2011


SZE observables, pressure profiles and centre offsets in Magneticum simulation galaxy clusters
journal, April 2017


Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys
journal, June 2001


The Mira–Titan Universe: Precision Predictions for dark Energy Surveys
journal, March 2016


The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog
journal, March 2018


The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses★
journal, March 2015


Matplotlib: A 2D Graphics Environment
journal, January 2007


Impact of massive neutrinos on the abundance of massive clusters
journal, March 2012


LSST: From Science Drivers to Reference Design and Anticipated Data Products
journal, March 2019


On the use of C -stat in testing models for X-ray spectra
journal, September 2017


Evolution and clustering of rich clusters
journal, September 1986


Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg 2 SPT-SZ Survey
journal, December 2018


Formation of Galaxy Clusters
journal, September 2012


A New Robust Low‐Scatter X‐Ray Mass Indicator for Clusters of Galaxies
journal, October 2006


Towards a realistic population of simulated galaxy groups and clusters
journal, May 2014


Spectral Energy Distribution of Radio Sources in Nearby Clusters of Galaxies: Implications for Sunyaev-Zel'Dovich Effect Surveys
journal, March 2009


The observed growth of massive galaxy clusters - II. X-ray scaling relations: Cluster growth: X-ray scaling relations
journal, July 2010


Weighing the giants– V. Galaxy cluster scaling relations
journal, September 2016


Weighing the giants – IV. Cosmology and neutrino mass
journal, November 2014


The Aemulus Project. II. Emulating the Halo Mass Function
journal, February 2019


Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
journal, October 2018


The Remarkable Similarity of Massive Galaxy Clusters from z ∼ 0 to z ∼ 1.9
journal, June 2017


Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data
journal, May 2017


Catalog extraction in SZ cluster surveys: a matched filter approach
journal, September 2006


Equation of State Calculations by Fast Computing Machines
journal, June 1953


Properties of the Intracluster Medium in an Ensemble of Nearby Galaxy Clusters
journal, June 1999


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Planck 2015 results : XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
journal, September 2016


A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering
journal, April 2013


Galaxy Clusters Discovered via the Sunyaev-Zel’Dovich Effect in the First 720 Square Degrees of the South pole Telescope Survey
journal, January 2013


The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15
journal, March 2015


The Redmapper Galaxy Cluster Catalog from des Science Verification data
journal, May 2016


Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey
journal, March 2017


Constraints on the richness–mass relation and the optical-SZE positional offset distribution for SZE-selected clusters
journal, October 2015


Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev–Zel'dovich Survey
journal, October 2017


Simulations of the Microwave sky
journal, January 2010


PISCO: the Parallel Imager for Southern Cosmology Observations
conference, July 2014


Weak-lensing analysis of SPT-selected galaxy clusters using Dark Energy Survey Science Verification data
journal, January 2019


Galaxy populations in the most distant SPT-SZ clusters: I. Environmental quenching in massive clusters at 1.4 ≲
journal, February 2019


Review of Particle Physics
journal, August 2018


Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality
journal, December 2008


Galaxy Clusters Selected with the Sunyaev-Zel'Dovich Effect from 2008 South pole Telescope Observations
journal, September 2010


The NumPy Array: A Structure for Efficient Numerical Computation
journal, March 2011


KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering
journal, March 2018


The impact of galaxy formation on the total mass, mass profile and abundance of haloes
journal, June 2014


CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION
journal, February 2009


CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS
journal, February 2009


Weighing the Giants – I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images
journal, February 2014


A SUNYAEV-ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg 2 SOUTH POLE TELESCOPE SURVEY
journal, August 2011


Gravitational Lensing by NFW Halos
journal, May 2000


CosmoSIS: Modular cosmological parameter estimation
journal, September 2015


Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters
journal, September 2016


Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
journal, September 2016


CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy
journal, February 2021


Review of Particle Physics
text, January 2008


Planck 2015 results : VI. LFI mapmaking
journal, September 2016


Planck 2015 results : X. Diffuse component separation: Foreground maps
journal, September 2016


Works referencing / citing this record:

The Galaxy Cluster Mass Scale and Its Impact on Cosmological Constraints from the Cluster Population
journal, February 2019


KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data
journal, January 2020


Implications of a transition in the dark energy equation of state for the H 0 and σ 8 tensions
journal, December 2019


Weak lensing measurements of the APEX-SZ galaxy cluster sample
journal, June 2019


Ellipticity of brightest cluster galaxies as tracer of halo orientation and weak-lensing mass bias
journal, November 2019


Tomographic measurement of the intergalactic gas pressure through galaxy–tSZ cross-correlations
journal, December 2019


The impact of the observed baryon distribution in haloes on the total matter power spectrum
journal, December 2019


Improving constraints on fundamental physics parameters with the clustering of Sunyaev-Zeldovich selected galaxy clusters
journal, September 2019


Spherical collapse in coupled quintessence with a Λ CDM background
journal, January 2020


Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
journal, October 2019


Suppressing the Thermal SZ-induced Variance in CMB-cluster Lensing Estimators
journal, December 2019


Constraints on Cosmological Parameters from the 500 deg 2 SPTPOL Lensing Power Spectrum
journal, January 2020


Figures / Tables found in this record:

c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 33)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 34)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 35)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 36)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 37)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 38)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 39)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 40)table
c, and YSZ are the same as presented in Bleem et al. (2015), while the redshifts marked with * have been updated. Spectroscopic redshifts are quoted without uncertainties. The mean mass estimates and mass uncertainties take the intrinsic and measurement scatter into account. We quote redshift lower limits for unconFI rmed SZ detections. The mass estimates M500c and M200c are derived from the SPTcl dataset in the vΛCDM model (Table 3 column 3) and are fully marginalized over cosmology and scaling relation parameter uncertainties. The estimates M$$no syst.\atop{500c}$$ are computed assuming a fi xed cosmology and using the best- t scaling relation parameters obtained from fi tting the SPT-SZ number counts against that fixed cosmology (this approach was also adopted in Bleem et al. 2015). The full catalog with ξ > 4:5 can be found at https://pole.uchicago.edu/public/data/sptsz-clusters." data-ostiid="1490847" style="padding-bottom: 2em; border-bottom: 1px solid #ddd;">
Table 5(p. 41)table
Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.