Innovative Technologies for Optical Detection of Stress Corrosion Cracks
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Stress corrosion cracks (SCC) represent a major concern for the structural integrity of engineered metal structures. In hazardous or restricted-access environments, remote detection of corrosion or SCC frequently relies on visual methods; however, with standard VT-1 visual inspection techniques, probabilities of SCC detection are low. Here, we develop and evaluate an improved optical sensor for SCC in restricted access-environments by combining a robotically controlled camera/fiber-optic based probe with software-based super-resolution imaging (SRI) techniques to increase image quality and detection of SCC. SRI techniques combine multiple images taken at different viewing angles, locations, or rotations, to produce a single higher- resolution composite image. We have created and tested an imaging system and algorithms for combining optimized, controlled camera movements and super- resolution imaging, improving SCC detection probabilities, and potentially revolutionizing techniques for remote visual inspections of any type.
- Research Organization:
- Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1488645
- Report Number(s):
- SAND--2018-10541; 670993
- Country of Publication:
- United States
- Language:
- English
Similar Records
The Capabilities and Limitation of Remote Visual Methods to Detect Service-Induced Cracks in Reactor Components
A twenty first century approach to inspection