Using a Dynamic Substructuring Approach to Model the Effects of Acoustic Damping in Coupled Acoustic-Structure Systems
- Univ. of Georgia, Athens, GA (United States). College of Engineering
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Acoustic-structure coupling can substantially alter the frequency response of air-filled structures. Coupling effects typically manifest as two resonance peaks at frequencies above and below the resonant frequency of the uncoupled structural system. In this study, a dynamic substrucuring approach is applied to a simple acoustic-structure system to expose how the system response depends on the damping in the acoustic subsystem. Parametric studies show that as acoustic damping is increased, the frequencies and amplitudes of the coupled resonances in the structural response undergo a sequence of changes. For low levels of acoustic damping, the two coupled resonances have amplitudes approximating the corresponding in vacuo resonance. As acoustic damping is increased, resonant amplitudes decrease dramatically while the frequency separation between the resonances tends to increase slightly. When acoustic damping is increased even further, the separation of the resonant frequencies decreases below their initial separation. Finally, at some critical value of acoustic damping, one of the resonances abruptly disappears, leaving just a single resonance. Counterintuitively, increasing acoustic damping beyond this point tends to increase the amplitude of the remaining resonance peak. Finally, these results have implications for analysts and experimentalists attempting to understand, mitigate, or otherwise compensate for the confounding effects of acoustic-structure coupling in fluid-filled test structures.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000; NA0003525
- OSTI ID:
- 1485849
- Report Number(s):
- SAND--2018-13088J; 669971
- Journal Information:
- Journal of Vibration and Acoustics, Journal Name: Journal of Vibration and Acoustics Journal Issue: 2 Vol. 141; ISSN 1048-9002
- Country of Publication:
- United States
- Language:
- English
Similar Records
Characterization of acoustic effects on flame structures by beam deflection technique
Study on acoustic resonance and its damping of BWR steam dome