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Acoustic-structure coupling can substantially alter the fre-
quency response of air-filled structures. Coupling effects typ-
ically manifest as two resonance peaks at frequencies above
and below the resonant frequency of the uncoupled structural
system. Here, a dynamic substrucuring approach is applied
to a simple acoustic-structure system to expose how the sys-
tem response depends on the damping in the acoustic sub-
system. Parametric studies show that as acoustic damping
is increased, the frequencies and amplitudes of the coupled
resonances in the structural response undergo a sequence of
changes. For low levels of acoustic damping, the two cou-
pled resonances have amplitudes approximating the corre-
sponding in vacuo resonance. As acoustic damping is in-
creased, resonant amplitudes decrease dramatically while
the frequency separation between the resonances tends to in-
crease slightly. When acoustic damping is increased even
further, the separation of the resonant frequencies decreases
below their initial separation. Finally, at some critical value
of acoustic damping, one of the resonances abruptly disap-
pears, leaving just a single resonance. Counterintuitively,
increasing acoustic damping beyond this point tends to in-
crease the amplitude of the remaining resonance peak. These
results have implications for analysts and experimentalists
attempting to understand, mitigate, or otherwise compensate
for the confounding effects of acoustic-structure coupling in
fluid-filled test structures.

*Address all correspondence to this author.

1 Introduction
Modal testing [1] is a cornerstone of the modern practice of
structural dynamics. Often, modal tests are performed on
hollow, air-filled test articles. In many cases, the presence
of the air-filled cavity is negligible and the resulting struc-
tural frequency response functions (FRFs) agree with those
produced by corresponding in vacuo finite element models.
However, if a natural mode of the in vacuo structure happens
to be spatially similar and in close frequency proximity to
one or more uncoupled acoustic modes of the cavity, cou-
pling effects cause the structural FRF to deviate from its in
vacuo counterpart [2]. In these situations, the frequency re-
sponse of the coupled system resembles that of a tuned-mass-
damper (TMD) [3] where the single structural resonance is
split into two resonances appearing at forcing frequencies
above and below the in vacuo resonant frequency. The natu-
ral modes corresponding to the two resonances are coupled,
with non-negligible content in both the fluid and structure
degrees of freedom [4].

Acoustic-structure resonances can confound model cor-
relation efforts which seek to match experimental results to
an in vacuo finite element analysis. When faced with this
issue, it may be tempting to try to suppress the influence of
the fluid by adding damping material to the cavity; however,
because of the energy exchange between the coupled modes,
this strategy will not recover the in vacuo structural response.
In fact, the resonant behavior of the system as acoustic damp-
ing is increased is not intuitive. In a recent modal test of an
air-filled aluminum cylinder, Schultz and Pacini [5] identi-
fied a pair of acoustic-structure resonances in the structural
FRF. They then found that progressively adding foam to the
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cylinder's cavity eventually prompted the disappearance of
one of the coupled resonances, and observed that the fre-
quency and amplitude of the persisting resonance did not
seem to match those belonging to the corresponding in vacuo
resonance.

To provide insight into the effects of acoustic damping
in coupled acoustic-structure systems, this paper considers
a simple model—a single degree of freedom (SDOF) pis-
ton coupled to a one-dimensional acoustic waveguide. This
model is appealing because it allows coupling effects to be
described in terms of two parameters—the ratio of the struc-
tural mass to the fluid mass, a, and the ratio of the uncoupled
structural and acoustic natural frequencies, In systems in-
volving continuous structures, a third parameter describing
the spatial similarity between the uncoupled acoustic and
structural mode shapes also affects coupling strength [6].
The piston/waveguide model effectively removes the influ-
ence of this third parameter from the problem; enabling fun-
damental acoustic-structure interaction behavior to be ob-
served with more simplicity and generality. An additional
benefit of the piston/waveguide model is that its undamped
response has been studied previously [7, 8]. This allows
the implementation of the present modeling approach to be
checked against published results.

The physical mechanisms by which energy is dissipated
in acoustic media are complicated. Typical acoustic damp-
ing models invoke complex-valued, frequency dependent,
impedance boundary conditions. To retain model simplicity
and generality, acoustic energy dissipation is modeled here
using a viscous damping ratio. While this is a simple and fa-
miliar strategy, the consideration of acoustic damping of any
sort distinguishes the present study from existing acoustic-
structure interaction literature. Most acoustic-structure in-
teraction studies are concerned with the prediction of cou-
pled natural frequencies and modes (see, e.g., Refs. [9-11]).
Calculation of the forced response of acoustic-structure sys-
tems is much less common. In these rare cases, the sys-
tem is generally assumed to be either undamped [7] or sub-
ject to a modal viscous damping ratio applied at the system
level [12]. While the present study is distinct in the realm
of acoustic-structure interaction research, analogies can be
made to previous work considering the influence of attach-
ment mass damping on the forced response of TMDs [13,14].

The present modeling approach proceeds by first us-
ing a Ritz series approximation to calculate the natural fre-
quencies and modes of the acoustic subsystem. Next, the
modal representations of the acoustic and the structural sub-
systems are assembled in a disjoint (i.e., unconstrained) sys-
tem of equations. This enables the straightforward applica-
tion of acoustic subsystem damping. A boolean constraint
matrix is used to specify displacement compatibility at the
fluid-structure interface. After transforming the constraint
matrix into modal coordinates, its null space is calculated.
The result is a matrix that transforms the disjoint system of
equations into a generalized coordinate system where the in-
terface constraints are satisfied. An eigen-analysis in this
generalized coordinate system yields the system natural fre-
quencies and modes that are used as inputs in a forced re-

sponse analysis. This approach, which will be referred to
as modal coordinate assembly component mode synthesis
(MCA-CMS), incorporates elements from the modern prac-
tice of dynamic substructuring [15, 16] and Ginsberg's Ritz
series analysis of acoustic-structure systems [7, 8, 17]. The
MCA-CMS approach has some appealing features. First, and
most importantly to this study, it permits the straightforward
assignment of acoustic subsystem damping. It also enables
direct and accurate recovery of the acoustic pressure at the
fluid-structure interface [7]. Looking ahead to future imple-
mentations where MCA-CMS is used with more geometri-
cally complex acoustic-structure systems, the approach has
some appeal relative to alternative acoustic-structure CMS
methods [18] because MCA-CMS does not require explicit
knowledge of subsystem mass and stiffness matrices. This is
advantageous because these matrices can be cumbersome to
extract from finite element software. A preliminary imple-
mentation of MCA-CMS on a three dimensional acoustic-
structure system can be found in a conference paper by the
authors [19].

2 Theory
Consider a SDOF piston coupled to the one-dimensional

acoustic waveguide as shown in Fig. 1. The piston has mass,

ms, and is restrained by a spring of stiffness, ks, and a vis-
cous damper with a damping coefficient, cs. The waveguide
is filled with fluid with density Po and speed of sound co.
The face of the piston has an area A and is located a x = O.
The rigid end of the waveguide is at x = L. This system is
analyzed using the MCA-CMS approach. Broadly speak-
ing, the approach proceeds as follows: 1) Describe the fluid
system using a set of Ritz basis vectors and find the associ-
ated natural frequencies and modes. 2) Assemble the disjoint
fluid-structure system in modal coordinates and enforce the
interface constraint using Lagrange multipliers. 3) Perform a
frequency response analysis using the complex-valued natu-
ral frequencies and modes to find the response of the system
for varying levels of acoustic subsystem damping.
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Fig. 1: SDOF piston coupled to one-dimensional closed
waveguide

2.1 Ritz Analysis
The objective here is to perform an eigen-analysis in the

fluid domain to identify a basis of acoustic natural frequen-



cies and modes that can be used in the MCA-CMS proce-
dure. The fluid mass and stiffness matrices used in the eigen-
analysis are found with the expressions for total kinetic and
potential energy of an acoustic fluid [7]

L
PoA
2

T1 = f v(x,t)2dx,

o

Uf =
PocuA   dx

2 ati(X t) 2

o

(1)

(2)

where v(x,t) and u(x,t) are the fluid particle velocity and
displacement, respectively.

The Ritz approach assumes that fluid velocity potential,
0, can expressed as a superposition of the products of basis
vectors, denoted iv], and generalized velocities, t

0(x,t)= Dri(x)t.i(t). (3)

In one dimension, the fluid particle velocity is related to ve-
locity potential by v = aO/ax. Using the fact that space and
time are separated in Eqn. (3), Eqns. (1) and (2) can be writ-
ten as

1
Tf = 2 L LMfjktA,

j k

1
Uf = 2 LLK/j.kzjzk,

k

(4)

(5)

where the elements of the fluid mass and stiffness matrices
are calculated from

Nifik =130A f (x)Nik(x) dx, (6)

Kfik = poAc6 f v7(x)14(x)dx. (7)

Here, the prime notation is used to denote a spatial deriva-
tive. Next, a finite number Ritz vectors are chosen, and the
fluid natural frequencies and modes are calculated from the
associated eigenvalue problem,

([Kf] — wf [Mf]) f`Df = {0}, (8)

where 0)f and {4:1)f } denote a pair of fluid natural frequencies
and modes. The modes are then mass normalized such that
[0:Tof] [Mi] [(To./ = [I], where [I] is the identity matrix.

2.1.1 Choice of Ritz Vectors
As discussed by Ginsberg [7, 8], a key consideration in

the Ritz analysis of acoustic-structure systems is the choice
of appropriate Ritz vectors. Requirements for candidate vec-
tors are that they be linearly independent and kinematically
admissible [20]. A number of families of functions can po-
tentially satisfy these requirements (e.g., trigonometric func-
tions, polynomials, Bessel functions). The rigid wall acous-
tic modes of the duct are a tempting choice of basis func-
tions because they are familiar, easily expressed, and likely
to closely approximate the acoustic modes of the coupled
system. These modes are given by

i = cos (fluv ) j = 0,1,2, ..., (9)

which have corresponding natural frequencies given by co =
jncol L. However, recognizing that the velocity of the fluid
at the fluid-structure interface is proportional to a4/ax, inter-
face compatibility in the coupled system cannot be enforced
if all basis vectors are defined such that V(0) = 0. This disal-
lows the exclusive use of rigid wall modes as basis functions.
An alternative strategy is to use modes with zero pressure
at the interface. These so-called pressure-release modes are
given by

= sin( (21 + 1)7cx)
2L 

j =0,1,2,..., (10)

with natural frequencies of co = (2 j 1)/cco/2L. While
pressure-release modes have a non-zero derivative at the in-
terface, their exclusive use will lead to slow convergence and
incorrect interface pressures. However, if the coupled re-
sponse of the structure is of primary interest, it may be possi-
ble to obtain accurate results using a basis composed entirely
of pressure-release modes [19]. This is convenient for sys-
tems with complex geometry because some commercial fi-
nite element software packages can easily compute pressure-
release natural frequencies and modes.

To circumvent issues with the exclusive use of rigid wall
or pressure release modes, it is possible to use a basis that
is a combination of the two. Alternatively, it is possible to
augment a basis of pressure-release modes with polynomial
vectors, e.g.,

= 
L - x) j +1

Wj j =1,2,3,.... (11)



Note that the use of a mixed basis can produce some sub-
system natural frequencies and modes that have no obvi-
ous physical significance. These modes, however, enrich the
modal description of the subsystem and enable constraints
to be enforced more readily. For the present system, when
mixed bases involving open-closed modes and closed-closed
modes are used, it is observed that all but the highest one or
two fluid subsystem natural frequencies correspond to open-
closed natural frequencies of the duct. It is also observed
that the largest fluid subsystem natural frequency is usually
much higher than the others. Similar eigenvalue behavior is
observed when residual flexibility modes (also known as at-
tachment modes) are used in free-interface CMS of purely
structural systems [21].

2.2 Modal Coordinate Assembly
Now the modal representations of the acoustic and struc-

tural subsystems are assembled. This allows the assignment
of modal damping at the subsystem level, which is essential
to the subsequent analysis. The procedure begins by assem-
bling the disjoint system

I [I] f 4f [ [2cf co f ] o f
[0 1_114, [ 0 gsws

(12)

[[co.2f] 0 f q fl f
0 (0 s2ltqs tO f

Here, [I] is the Nf x Nf identity matrix where Nf is the to-
tal number of fluid basis vectors. Similarly, [2Cf cof] and

[Of] are Nf x Nf diagonal matrices containing the acoustic

damping terms and the acoustic natural frequencies squared.
Since the structural portion of the system is a SDOF os-
cillator, it is modeled  with a single uncoupled natural fre-
quency, cos VIcs/m5, and a single viscous damping ratio,

Cs cs12Vksms. The transformation from physical coordi-
nates to the generalized coordinates, q, is given by

u RV] 01 

[ 0 

[Tf ] 

Vl/md qs 
f qf . (13)

[ 0 

The equations of motion in Eqn. (12) need to be joined
by enforcing the desired constraints in terms of physical co-
ordinates. The constraint equations take the form of

[a] {:nr~im = {Oo , (14)

where [a] is a boolean constraint matrix and um, and wint are
the interface displacements of the fluid and structure. For the
present system where displacement compatibility is enforced
at x = 0, [a] is a 1 x 2 vector given by [1, —1]. Inserting
Eqn. (14) into Eqn. (13) gives a set of constraint equations in

terms of the generalized coordinates

[a] RN/int] [[CT3f]   
fqfl rai fqfl fol

L 0 CI V1/rnsi 1 qs ji qs f

(15)
In the constrained system, the constraint forces are included
in the equations of motion. These forces are proportional to
the rows of the constraint matrix [a], and the constants of pro-
portionality, A, are known as Lagrange multipliers [20]. The
constraint equation in Eqn. (15) and the equations of motion
in Eqn. (12) with the constraint forces are the complete equa-
tions of motion for the system

[[(/)] oi] {441 [[gfocof] 2c0swi 44fs

+ [cofl 0 _ {A} ,
0 cofl J

[a] {qqfs = {O'3
} 

(16)

Eqns. (16) are a set of differential-algebraic equations that
can be solved by identifying a set of unconstrained degrees
of freedom, denoted 4. This set is related to the complete set
of generalized coordinates by

{qqfs = [B] {4} (17)

where [B] is a transformation matrix that eliminates the con-
strained degrees of freedom. Using Eqn. (17) and the con-
straint equations in Eqns. (16), gives

[a][13] {} = (18)

For Eqn. (18) to hold for non-trivial values of [a] [B] = [0].
In linear algebra, [B] is called the nullspace (or kernel) of [a].

Substituting Eqn. (17) into the first of Eqns. (16) and
premultiplying both sides of the first equation by [B]T gives

[10] {4} + [6] + [k] {4} = [B]T AT {A}, (19)

where [B]T AT = 0 since [a] [B] = [0], and where the system
matrices are given by

[k] = [B]T [Vo] 011[B] ,

[6] = [B]T [[2C0f] 4C),(0s] [B], (20)

[k] = [B]T [[(1)02.f] (0°1 [B] .



2.3 Complex Modal Analysis
Due to the presence of arbitrary subsystem damping, the

natural frequencies and modes resulting from Eqn. (20) will
generally be complex-valued. To calculate the steady-state
forced response of the system, a complex modal analysis pro-
cedure is used. The procedure is outlined here, and a com-
plete description can be found in the work of Patil [22].

First, the non-symmetric system of n second-order
ODEs is written as a system of 2n first-order ODEs

{c} = [S] {X} + [D]{R} (21)

where

4 ,{x} = {;} [D] =[ [0] ,

[s] =
[0]

[ „[I]_1 
—1

(22)
— [Al] [lc] — [m] [On

and where {R} is the forcing vector in the 4 generalized co-
ordinate system. It is related to the forcing vector in physical
coordinates, {F}, via

{R} = [B]T [O -V 11 ins 0
f] T [—poc6 [VI 01 T
0  1]

 {F}, 
(23)

where the fluid portion of {F} is in terms of acoustic pres-
sure, p, with the —poc4 [Nra] term resulting from the continu-
ity equation for compressible inviscid fluid, p= —pocid Fn.
Assuming {R} = {0} and that Eq. (21) has solutions of the
form {x} = :E{X}e24, where X is a system eigenvalue, the
standard algebraic eigenvalue problem is then,

[5]{X} = X{X}. (24)

The eigenvectors associated with Eq. (24) are not or-
thogonal with respect to the nonsymmetric system matrix [S],
but are biorthogonal to the eigenvectors corresponding to the
adjoint eigenvalue problem, i.e., NT {Y} = A,{Y}. A given
pair of eigenvectors, {Xi} and {17j}, (known as right and left
eigenvectors, respectively) can be normalized accordingly

{Yi}*T{Xi} = 28ij (i, j = 1,2,3,...,2n), (25a)

{Yi}*T = (i, j = 1, 2,3, ..., 2n), (25b)

where the superscript [o]*T denotes the complex conjugate
transpose and Su is the Kronecker delta function. The factor
of two in these relations simplifies the transition of the sys-
tem into a second-order form. Solving the system and adjoint
eigenvalue problems results in n pairs of complex conjugate

eigenvalues and eigenvectors

kk = oak+ Xn+k = ock — (26a)

{K} = {rk} + i{sk} {Xn+k} = {rk} — i{sk}, (26b)

{K} = {14} + ityvkl {Yn+k} = {Vk} —41441, (26c)

where (k = 1, 2, 3, ..., n). For a given mode index k, the
modal force, Fk, is given by two scaler quantities,

Plac = {V k}T [D]{R}
Fk = {Wic}T [D]{R}

(27a)

(27b)

The transformation of Eqn. (21) into an equivalent sys-
tem of n uncoupled second-order equations is now sought.
This second-order form is appealing because it facilitates di-
rect analogies to the familiar results of classical modal anal-
ysis. However, the transformation requires that Pka = 0. This
can be satisfied by first recognizing that scaling an eigenvec-
tor by any complex constant, ck, will return another system
eigenvector. It is therefore possible to find a value of ck that
renders a purely imaginary eigenvector when it is multiplied
by the original left eigenvector, {Y}k. This will ensure that
Fka = 0. Setting the complex modulus of ck to unity will also
ensure that the normalization of the eigenvectors is main-
tained. The desired complex constant is calculated from

(pp ifka)
Ck =  

01112 (Pkb)2'

(28)

and is then multiplied by {17k }. Its complex conjugate is
multiplied by {X}k. This results in two transformed sets of
biorthonormal eigenvectors with new corresponding values
of {rk} {sk}, {vk}, and {WO. These new values are used to
calculate the steady-state complex amplitude response of the
generalized coordinates

L(a))1 n

E(co) = Vki—'=1 MI-13D (1)2 2akiœ

Fb

•

x ({rk} + 0
k 

{s ,
P 

where Pt is now given by

fkb = fockfvkl — 13k{Wk}}T [I)] {R}

(29)

(30)

and the transformation back into physical coordinates in
terms of acoustic pressure and structural displacement is

—A 04 WI 0] [Of] , 0, 1[B] {E}.
{wp} [ 0 1 0 y /ins 

(31)
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Fig. 2: First three natural frequencies as calculated using
three different types of bases (markers) compared to values
calculated analytically using Eqn. (32) (dashed lines)

3 Results
3.1 Convergence and Verification

As the number of basis functions is increased, the con-
vergence of the first four natural frequencies can be observed
in Fig. 2. Three different types of bases are considered. In
each basis, open-closed modes (Eqn. (10)) are used with: 1.
no additional basis vectors, 2. additional polynomial basis
vectors (Eqn. (11)), and 3. additional closed-closed modes
(Eqn (9)). For cases 2 and 3, vectors are added by alternat-
ing between the two types beginning with the open-closed
modes. Fig. 2 shows results versus the total number of ba-
sis vectors with mass ratio a ms 1 NAL = 10 and uncou-
pled natural frequency ratio (0,,L, /Iwo = 1. This perfect
coincidence of uncoupled natural frequencies results in two
coupled natural frequencies with values above and below the
uncoupled natural frequency. The first four natural frequen-
cies calculated using the MCA-CMS method are compared
to those identified analytically from the characteristic equa-
tion [7],

COsL 2
a ((kL)2 (  co sin(kL) — kLcos(kL) = 0, (32)

where k c,o/co. The results show that the most rapid fre-
quency convergence is achieved when the set of closed-open
modes are augmented with closed-closed modes. The use
of three open-closed modes in conjunction with two closed-
closed modes (five vectors total) causes the first four natural
frequencies to be well converged. This suggests that, given
an efficient basis, it may be possible to achieve sufficient nat-
ural frequency convergence using a number of vectors that is
one greater than the number of natural frequencies of inter-
est. This is not surprising since the application single con-
straint equation eliminates one generalized degree of free-

dom. Given the simplicity of the present problem, retaining
more than the minimum number of vectors is not compu-
tationally burdensome, so in subsequent results, a total of
ten vectors (five open-closed and five closed-closed) are re-
tained. It is noted that similarly good convergence can also
be obtained by using a basis consisting of primarily open-
closed modes and just one or two closed-closed modes.

The implementation of the frequency response method
described in Section 2.3 is checked against closed-form an-
alytical expressions for the undamped case. For a harmon-
ically driven piston with a forcing amplitude of Fo, Gins-
berg [7] gives the steady-state response of the mean-square
acoustic pressure averaged over the length of the waveguide
as

FPci, (2kL sin(2kL))
p2av(k) =  8(1-A)2

(33)

and the amplitude of the corresponding structural response
as

W (k) = 
FoLsin (kL)

ocoAr
(34)

Fig. 3 compares the frequency response of the structure
and the fluid as calculated by the MCA-CMS approach and
the analytical expressions. Here, a = 10 and q= 1. For cal-
culation of the mean-square pressure using MCA-CMS, the
fluid domain is discretized into 500 segments. The steady-
state response of the structure is normalized by the static de-
flection of the uncoupled piston (i.e., Wo = Fo/ks). For cases
in which the effective stiffness of the fluid is small relative
to ks, the structural FRF will approach unity at the low fre-
quency limit. The spatially averaged mean-square pressure
in Fig. 3(b) is normalized by the spatially averaged mean-
square pressure due to a static piston deflection,

P avo 2
1 ( poc,Vo 

•

22
= LIcs }

(35)

The two sets of results in Fig. 3 are nearly indistinguish-
able, which indicates the accuracy of the MCA-CMS imple-
mentation. The error curves in Fig. 3 quantify the normalized
difference between the frequency domain and MCA-CMS
solutions. These curves represent the absolute value of the
difference between the frequency domain and MCA-CMS
solutions at a given frequency, normalized by the frequency
domain solution at that frequency. The error curves confirm
that the differences between the two solutions are negligible.
Relatively large errors are observed only at resonances and
anti-resonances where response amplitudes are not physical
due to the absence of damping.
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Fig. 5: (a) Structural FRF and (b) normalized mean-square cavity pressure averaged over the length of the waveguide for
i = 1 and three different mass ratios

Fig. 3 further illustrates the fundamental effects of
acoustic-structure coupling; namely, when an uncoupled
structural and acoustic natural frequency exactly coincide,
two system resonances appear at frequencies above and be-
low the uncoupled natural frequency. For the present sys-

tem, the extent to which resonant frequencies separate due to
coupling effects depends on the proximity of uncoupled fre-
quencies and the structure-to-fluid mass ratio. This behavior
is reminiscent of that of a classical vibration absorber, where
in this case, the piston is the primary mass and the fluid is
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analogous to the secondary mass.

3.2 Acoustic-Structure Resonances
Before considering the influence of acoustic damping,

the effects of acoustic-structure coupling in the undamped
case are observed in more detail. In addition to altering
system natural frequencies, coupling causes changes to the
acoustic modes. These changes are most profound for small
mass ratios. As the piston mass increases relative to the mass
of the fluid, the face of the piston acts increasingly like a
rigid wall and the coupled modes shapes will approach that
of a rigid wall waveguide. Fig. 4(a) and (b) respectively
show the two coupled pressure mode shapes when ri = 1 and
ri = 2. The mode shapes are normalized to unity and com-
pared to the corresponding closed-closed mode of the waveg-
uide. To more clearly observe coupling effects, a is set to
unity. Fig. 4(a) shows that relative to the closed-closed mode,
the first coupled mode is similar in shape, but has lower am-

plitude at the piston interface. This is expected given that the
non-zero velocity of the interface will not result in a pressure
maximum. While the first coupled mode varies monotoni-
cally down the length of the waveguide, the second coupled
mode obtains a pressure maximum at 0.2. In Fig. 4(b),
the uncoupled structural natural frequency corresponds to the
second non-zero natural frequency of the rigid waveguide.
Here, because of the acoustic resonance at co = ncolL, the
coupled modes are the second and third modes of the sys-
tem and are comparable to the second j = 2 closed-closed
shape. It is observed that acoustic-structure coupling has
the effect of shifting the nodes of the coupled mode shapes,
with the nodes closest to the piston undergoing the great-
est shift. In fact, all of the coupled modes tend to approach
the closed-closed shape with increasing distance down the
waveguide [23].

Fig. 5 shows the structural FRF and the spatially av-
eraged mean-square pressure response for a = 1, 10, and
100 when ri = 1, = 0.01, and = 0. Increasing mass



ratio has the effect of decreasing the frequency separation
of the coupled resonances, and changes in mass ratio af-
fect the amplitudes of the coupled structural and fluid reso-
nances in different manners. In the structural FRF, changing
mass ratio has little influence on normalized amplitudes of
the coupled resonances. However, the higher acoustically-
dominated structural resonances are only significant for low
mass ratios. These trends are reversed in the fluid domain.
For the coupled resonances, the normalized average mean-
square pressure is considerably higher when the mass ratio
is high; yet, changing the mass ratio has little influence on
amplitude of the higher-order acoustic resonances. Note that
the frequencies at which these higher-order resonances occur
shift higher when a = 1. This is because at low mass ratios,
the stiffness provided by the acoustic fluid is not negligible
relative to the mechanical stiffness.

Fig. 6(a) plots system natural frequencies normalized by
the nearest uncoupled natural frequency. These normalized
frequencies can be interpreted as the fractions by which a
given natural frequency is shifted due to acoustic-structure
coupling. Results are shown for a =1, 10, and 100 across ri
values from 0.5 to 1.5. As anticipated, the largest frequency
shifts occur when the uncoupled natural frequencies are close
and the mass ratio is small. For a = 100, the uncoupled nat-
ural frequencies must be nearly equivalent to observe appre-
ciable changes in the coupled natural frequencies. In the case
of a = 1, coupling causes significant shifts in natural fre-
quency even when the uncoupled natural frequencies are not
especially close.

Fig. 6(b) considers the energy content of the coupled
modes. When the system is not strongly coupled, system
modes are dominated by either structural or acoustic con-
tent, whereas strongly coupled modes exhibit non-negligible
energy content in both the fluid and structure degrees of free-
dom. The ratio of structural energy, Es, to fluid energy Ef, in
a given pair of modes [4] is

Es 2 ,+,2
acosk'es=

Ef {cDcf}T focfl •
(36)

Here, Ocs and (1:1Cf. represent the structural and fluid portions
of a coupled mode, where the structural portion has units
of displacement and the fluid portion has units of velocity
potential. This ratio is plotted on decibel scale in Fig. 6(b)
across ri values from 0.5 to 1.5. Mass ratios of 1, 10, and
100 are again considered. The results indicate the greatest
parity between structural and fluid energy occurs when the
uncoupled natural frequencies are nearly coincident. When
the uncoupled natural frequencies are not in close proximity,
modes corresponding to higher values of a are more strongly
dominated by either structural or acoustic energy, with pos-
itive and negative decibel values indicating structurally and
acoustically dominated modes, respectively. For a = 1, the
point of greatest parity between the structural and fluid en-
ergy occurs when 11 %:`-% 1.1. This is in contrast to the coupled
natural frequency behavior in Fig. 6(a) where the largest cou-
pled frequency shifts occur at ri = 1 regardless of mass ratio.

This indicates that coupling influences system eigenvalues
and eigenvectors somewhat differently.

3.3 Varying Acoustic Subsystem Damping
Now the effects of acoustic subsystem damping on the

system response are considered with the response of the
structural subsystem being of most interest. Unless other-
wise noted in the subsequent results, the structural subsystem
damping is assumed to be C = 0.01. Since all physical struc-
tures have some amount of damping, the use of a non-zero
structural damping adds realism to the analysis. The choice
of C = 0.01, while customary, is arbitrary. A different choice
of C would of course change the results. Nevertheless, it
is believed that the qualitative system behavior persists re-
gardless of the choice of structural damping. This should
be especially true as long as the structural damping remains
low. These assertions are supported by research involving
the effects of primary structure damping on the response of
TMDs [14].

To observe the resonant behavior of the coupled
acoustic-structure modes as damping is added to the acous-
tic subsystem, consider Fig. 7 where a = 10, i = 1, and
C = 0.01. Here, vertical lines are used to indicate the
resonant frequencies of the corresponding response curves.
When Cf = 0, the structural FRF exhibits two pronounced
resonance peaks and a distinct anti-resonance. The first
of these resonance peaks has a maximum amplitude that is
slightly higher than the corresponding in vacuo structural
resonance (i.e., Qo ,'--:_,' 1/2C = 50) while the second coupled
resonance is slightly lower. The spatially averaged mean-
square pressure response curve has two resonances at nearly
the exact same frequencies as the structural FRF. Due to the
exchange of energy between the fluid and the structure, these
acoustic resonances are bounded even though cf = 0. When
Cf = 0.04, both the fluid and structural resonances show a
significant reduction in amplitude. There is also a slight
change in the resonant frequencies. The first structural reso-
nance shifts from coL/nco = 0.930 to coL/nco = 0.929 while
the second structural resonance shifts from oL/nco = 1.071
to o)L/Tcco = 1.073, resulting in the resonances being slightly
more separated than they are when Cf = 0. The fluid reso-
nant frequencies, however, shift such that they become less
separated than they are when Cf = 0. When cf = 0.09, the re-
sponse amplitudes in both the structure and the fluid further
decrease making the coupled resonance peaks very broad.
The resonant frequency separation in both the fluid and the
structure is less than it is when cf = 0, with the decrease in
resonant frequency separation being more pronounced in the
fluid. Finally, when cf = 0.15, the responses exhibit a single
resonance peak that, in the case of the structure, has a greater
amplitude than either of the of the resonance peaks when
Cf = 0.09. In the case of the fluid, the Cf = 0.15 resonance
peak has the lowest amplitude and is found at a frequency of
oL/nco = 0.991 whereas the corresponding structural reso-
nance occurs at coLinco = 0.974.

It is clear from Fig. 7 that changes to energy dissipation
in the acoustic domain result in nuanced changes to the fre-



quency response of both the structure and the fluid. Fig. 8
shows these changes for a = 10 and uncoupled frequency
ratios of 0.95, 1.0 and 1.05. The left-hand panels of Fig. 8
track system resonant frequency against increases in acoustic
damping. The resonant frequencies are overlaid onto the cor-
responding system natural frequencies (the imaginary part
of the complex eigenvalue). The structural resonant ampli-
tudes are shown with a color scale and are normalized by the
corresponding resonant amplitude of the in vacuo structural
system, Qo = (2C, — 2CD-1. All frequencies are normal-
ized by the first non-zero acoustic natural frequency of the
closed-closed waveguide. The right-hand panels plot system
damping which is given by the ratio of the real part of the
system eigenvalue to the imaginary part.

Observing the behavior of the coupled natural frequen-
cies in Fig. 8 reveals that their separation tends to decrease
as acoustic damping is increased. In fact, for uncoupled fre-
quency ratios of 0.95 and 1.0, there exists an acoustic damp-
ing level at which the coupled frequencies coincide. How-
ever, this same behavior does not exist when = 1.05. In
all cases, the resonant frequencies closely follow the curve
representing the imaginary portion of the eigenvalue when
acoustic damping is low.

The system damping curves in Fig. 8 provide additional
insight into the system resonant behavior. In Fig. 8(d), = 1
and it can be observed that the total damping (Cs Ca) is ef-
fectively split between the two modes for low-to-moderate
values of acoustic damping,. This is true even when the vast
majority of the damping resides within the fluid. Because the
modes are well coupled, energy is exchanged and dissipated
efficiently between the modes. However, near Ca = 0.17,
there is a point at which the real parts of the system eigenval-
ues abruptly diverge. As acoustic damping increases beyond
this point, one mode becomes much more heavily damped
while the other becomes more lightly damped. In the re-
sponse, this results in a single resonance peak that increases
in amplitude as acoustic damping is increased. Another fea-
ture of the system behavior is that beyond the acoustic damp-
ing levels at which the real parts of the system eigenvalues
diverge, the total system damping is noticeably less than the
total subsystem damping. The behavior in which the real
parts of the system eigenvalues closely coincide for low val-
ues of Ca and then abruptly diverge seems to be a feature of
well-coupled systems (i.e., ri 1) with larger mass ratios.
This is evidenced in Fig. 9 where the system eigenvalues and
resonant behavior are shown for a = 1 and a = 100 with
= 1. When a = 1, the real parts of the system eigenval-

ues slowly diverge with increasing acoustic damping. When
a = 100, the divergence is pronounced and sudden.

From Figs. 8 and 9 alone, it is not entirely clear how
the uncoupled natural frequency ratio affects Cf„, the acous-
tic damping at which one of the coupled resonances abruptly
disappears. Fig. 10 shows this relationship for a = 1, 2, 10,
and 100, and the trends are consistent with those observed for
the energy ratios of the coupled modes (Fig. 6(b)). Specif-
ically, the highest values of Cf„ occur when parity between
the structural and fluid modal energy is greatest. In the en-
ergy ratio results, it is observed that the point of greatest par-

ity shifts toward higher uncoupled natural frequency ratios
when mass ratio is low. This is again observed in the Cf„
results, suggesting that the transition from two coupled reso-
nances to one depends on the coupled mode shapes, and not
the system natural frequencies.

The behavior of the structural resonant amplitudes with
increasing acoustic damping is observed in Fig. 11 for sev-
eral different mass ratios with 11 = 1. Curves correspond-
ing to Ç. = 0.005 (dashed) and Ç. = 0.01 (solid) are shown.
The acoustic damping is normalized by the assumed struc-
tural damping and the resonant amplitudes are normalized
by the resonant amplitude of the in vacuo structural system,

Qo. Parts (a) and (b) of Fig. 11 show the amplitudes of the
first and second resonant peaks, respectively. Across the two
levels of structural damping, the results show good qualita-
tive agreement, and at low levels of acoustic damping, the
two sets of results agree quantitatively as well.

When a = 1 and acoustic damping is low, the first res-
onance is more than 10% higher than the corresponding in
vacuo resonance. For a > 1 and very low levels of acoustic
damping, the two coupled resonance peaks have amplitudes
that approximate the amplitude of corresponding in vacuo
resonance. When a = 1, the amplitudes of both resonances
decrease monotonically with increasing acoustic damping.
For the other values of a, there exists a value of acoustic
damping that minimizes the amplitude of the first resonance.
Beyond this damping value, the amplitude of the first reso-
nance increases. For the a values considered, the value of
acoustic damping that minimizes the first resonance is near,
but not exactly, the value at which the second resonance dis-
appears. For example, with a = 100 and C = 0.01, the first
resonance is minimized when Cf /Cs 3.5 while the second
resonance disappears at Cf /Cs 3. When Cf approaches
unity (i.e., Ca /C, 102 in the Cs = 0.01 case) the a = 10
and 100 curves exhibit a local maximum beyond which fur-
ther increases in acoustic damping cause small decreases in
amplitude.

The results have shown that increasing acoustic damping
in an acoustic-structure system will first increase the separa-
tion between the resonance frequencies in the frequency re-
sponse of both structure and the fluid. Additional increases
in acoustic damping then cause the separation between the
coupled resonance frequencies to decrease below the ini-
tial separation. In Fig. 12 the (a) minimum and (b) max-
imum resonant frequency separation is plotted against the
uncoupled natural frequency separation for Ç. = 0.01. The
resonant frequency separation is normalized by the separa-
tion when Cf. = 0. Fig. 12(a) shows that the minimum fre-
quency separation of the coupled resonances depends heav-
ily on the uncoupled frequency separation. For the cases
in which a > 1, the lowest minimum frequency separations
occur when 1. Fig. 12(b) shows a somewhat different
trend. Here, the largest resonant frequency separations oc-
cur when the uncoupled natural frequencies are proximate,
but not equivalent. In any case, the increases in resonant fre-
quency separation are relatively small and do not exceed 5%.



4 Conclusion
The complicated relationships between acoustic damp-

ing and system response are investigated in the context of
a simple acoustic-structure system. The system is modeled
using an approach that adapts dynamic substructuring tech-
niques for use with acoustic-structure systems. The acoustic
subsystem is modeled using a Ritz series approach employ-
ing a mixed set of basis vectors. It is shown that a mixed set
of pressure-release and rigid wall modes provides an efficient
basis for the present system. While attention is restricted to
a one dimensional system, the modeling approach can, in
principle, be applied to geometrically complex two and three
dimensional systems.

Results show that as acoustic damping is increased in the
presence of acoustic-structure coupling, the frequencies and
amplitudes of the coupled resonances undergo a sequence of
changes. For low levels of acoustic damping, the two cou-
pled resonance peaks have amplitudes that approximate the
amplitude of the corresponding in vacuo resonance. Addi-
tionally, the frequency separation between the coupled res-
onance peaks depends on the mass ratio between the struc-
ture and fluid as well as the ratio of uncoupled natural fre-
quencies. As acoustic damping increases, the amplitude of
the coupled resonances decreases dramatically while the fre-
quency separation between the resonances increases slightly.
As acoustic damping increases even further, the separation
between the resonant frequencies decreases considerably. Fi-
nally, at some critical value of acoustic damping, one of the
resonances abruptly disappears, leaving just a single reso-
nance. Counterintuitively, increasing acoustic damping be-
yond this point tends to increase the amplitude of the remain-
ing resonance peak. This sequence of response behavior is
similar to what has been observed in TMDs as the damping
of the attachment mass is increased.

When faced with acoustic-structure coupling in a fluid-
filled test structure, system identification and model correla-
tion efforts can be challenging. Further, the results indicate
that a simple introduction of acoustic damping material is not
a viable method for recovering the in vacuo response of the
structure. Nevertheless, the present results can help analysts
and experimentalists identify acoustic-structure resonances,
explain discrepancies in their test/model correlations, and an-
ticipate how changes to the fluid cavity might influence the
resonant behavior of test structures.
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